{"id":254206,"date":"2024-10-19T16:47:47","date_gmt":"2024-10-19T16:47:47","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-60870-5-1011996\/"},"modified":"2024-10-25T12:11:34","modified_gmt":"2024-10-25T12:11:34","slug":"bs-en-60870-5-1011996","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-60870-5-1011996\/","title":{"rendered":"BS EN 60870-5-101:1996"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | BRITISH STANDARD <\/td>\n<\/tr>\n | ||||||
2<\/td>\n | Committees responsible for this British\ufffdStandard <\/td>\n<\/tr>\n | ||||||
3<\/td>\n | Contents <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | Foreword Foreword to amendment A1 Foreword to amendment A2 Contents <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 1 Scope and object 2 Normative references <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 3 Definitions 3.1 companion standard 3.2 group (of information objects) 3.3 control direction 3.4 monitor direction 3.5 system parameter 3.6 network-specific parameter 3.7 station-specific parameter 3.8 object-specific parameter <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 4 General rules 4.1 Protocol structure Figure 1 – Selected standard provisions of the defined telecontrol companion standard 4.2 Physical layer <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | Figure 2 – Interfaces and connections of controlling and controlled stations 4.3 Link layer 4.4 Application layer <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 4.5 User process 5 Physical layer 5.1 Selections from ISO and ITU-T standards Table 1 – Selection from V.24\/V.28 <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | Table 2 – Selection from X.24\/X.27 for interfaces to synchronous digital signal multiplexers 6 Link layer 6.1 Selections from IEC\ufffd60870-5-1: Transmission frame formats <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 6.2 Selections from IEC\ufffd60870-5-2: Link transmission procedures Figure 75 – State transition diagram by Grady Booch\/Harel <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | Table 10 – Permissible combinations of unbalanced link layer services <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | Figure 76 – Unbalanced transmission procedures, primary and secondary stations <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | Figure 77 – State transition diagram for unbalanced transmission primary to secondary <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | Figure 78 – State transition diagram for unbalanced transmission secondary to primary <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | Table 11 – Permissible combinations of balanced link layer services <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | Figure 79 – Balanced transmission procedures, primary and secondary link layers <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | Figure 80 – State transition diagram for balanced transmission primary to secondary <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | Figure 81 – State transition diagram for balanced transmission secondary to primary <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | Table 12 <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | Table 13 Table 14 – Effects of different resets 7 Application layer and user process 7.1 Selections from IEC\ufffd60870-5-3: General structure of application data <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | Figure 3 <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 7.2 Selections from IEC 60870-5-4: Definition and coding of application information elements Figure 4 <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Table 3 <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Table 4 Table 5 Table 6 Table 7 <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | Table 8 Figure 5 <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Figure 82 <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | Figure 6 <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | Figure 83 – Station interrogation via a concentrator station using the originator address <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Figure 84 – Command transmission via a concentrator station using the originator address <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | Table 9 <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Figure 7 <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | Figure 8 <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | Figure 9 Figure 10 Figure 11 <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | Table 15 <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 7.3 Definition and presentation of the specific ASDUs Figure 12 – ASDU: M_SP_NA_1 Single-point information without time tag <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | Figure 13 – ASDU: M_SP_NA_1 Sequence of single-point information without time tag <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | Figure 14 – ASDU: M_SP_TA_1 Single-point information with time tag <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | Figure 15 – ASDU: M_DP_NA_1 Double-point information without time tag <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | Figure 16 – ASDU: M_DP_NA_1 Sequence of double-point information without time tag <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | Figure 17 – ASDU: M_DP_TA_1 Double-point information with time tag <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | Figure 18 – ASDU: M_ST_NA_1 Step position information <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | Figure 19 – ASDU: M_ST_TA_1 Step position information with time tag <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | Figure 20 – ASDU: M_BO_NA_1 Bitstring of\ufffd32 bit <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | Figure 21 – ASDU: M_BO_TA_1 Bitstring of\ufffd32 bit <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Figure 22 – ASDU: M_ME_NA_1 Measured value, normalized value <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | Figure 23 – ASDU: M_ME_NA_1 Sequence of measured values, normalized values <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | Figure 24 – ASDU: M_ME_TA_1 Measured value, normalized value with time tag <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | Figure 25 – ASDU: M_ME_NB_1 Measured value, scaled value <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Figure 26 – ASDU: M_ME_NB_1 Sequence of measured values, scaled values <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | Figure 27 – ASDU: M_ME_TB_1 Measured value, scaled value with time tag <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | Figure 28 – ASDU: M_ME_NC_1 Measured value, short floating point number <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Figure 85 – ASDU: M_ME_NC_1 Sequence of measured values, short floating point number <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | Figure 29 – ASDU: M_ME_TC_1 Measured value, short floating point number with time tag <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | Figure 30 – ASDU: M_IT_NA_1 Integrated totals <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Figure 86 – ASDU: M_IT_NA_1 Sequence of integrated totals <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | Figure 31 – ASDU: M_IT_TA_1 Integrated totals with time tag <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | Figure 32 – ASDU: M_EP_TA_1 Event of protection equipment with time tag <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | Figure 33 – ASDU: M_EP_TB_1 Packed start events of protection equipment with time tag <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Figure 34 – ASDU: M_EP_TC_1 Packed output circuit information of protection equipment with time tag <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Figure 35 – ASDU: M_PS_NA_1 Packed single-point information with status change detection <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | Figure 36 – ASDU: M_ME_ND_1 Measured value, normalized value without quality descriptor <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | Figure 37 – ASDU: M_ME_ND_1 Sequence of measured values, normalized values without quality descriptor <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | Figure 64 – ASDU: M_SP_TB_1 Single-point information with time tag CP56Time2a <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | Figure 65 – ASDU: M_DP_TB_1 Double-point information with time tag CP56Time2a <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | Figure 66 – ASDU: M_ST_TB_1 Step position information with time tag CP56Time2a <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | Figure 67 – ASDU: M_BO_TB_1 Bitstring of 32 bits with time tag CP56Time2a <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | Figure 68 – ASDU: M_ME_TD_1 Measured value, normalized value with time tag CP56Time2a <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | Figure 69 – ASDU: M_ME_TE_1 Measured value, scaled value with time tag CP56Time2a <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | Figure 70 – ASDU: M_ME_TF_1 Measured value, short floating point number with time \ufffdtag CP5… <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Figure 71 – ASDU: M_IT_TB_1 Integrated totals with time tag CP56Time2a\ufffd\ufffd\ufffd <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | Figure 72 – ASDU: M_EP_TD_1 Event of protection equipment with time tag CP56Time2a <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | Figure 73 – ASDU: M_EP_TE_1 Packed start events of protection equipment with time tag CP56Time2a <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | Figure 74 – ASDU: M_EP_TE_1 Packed output circuit information of protection equipment with time tag CP56Time2a <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | Figure 38 – ASDU: C_SC_NA_1 Single command <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | Figure 39 – ASDU: C_DC_NA_1 Double command <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | Figure 40 – ASDU: C_RC_NA_1 Regulating step command <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | Figure 41 – ASDU: C_SE_NA_1 Set-point command, normalized value <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | Figure 42 – ASDU: C_SE_NB_1 Set-point command, scaled value <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | Figure 43 – ASDU: C_SE_NC_1 Set-point command, short floating point number <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | Figure 44 – ASDU: C_BO_NA_1 Bitstring of\ufffd32 bit <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | Figure 45 – ASDU: M_EI_NA_1 End of initialization Figure 46 – ASDU: C_IC_NA_1 Interrogation command <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | Figure 47 – ASDU: C_CI_NA_1 Counter interrogation command <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | Figure 48 – ASDU: C_RD_NA_1 Read command <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | Figure 50 – ASDU: C_TS_NA_1 Test command <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | Figure 51 – ASDU: C_RP_NA_1 Reset process command <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | Figure 52 – ASDU: C_CD_NA_1 Delay acquisition command <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | Figure 53 – ASDU: P_ME_NA_1 Parameter of measured values, normalized value <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | Figure 54 – ASDU: P_ME_NB_1 Parameter of measured values, scaled value <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | Figure 55 – ASDU: P_ME_NC_1 Parameter of measured values, short floating point number <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | Figure 56 – ASDU: P_AC_NA_1 Parameter activation <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | Figure 57 – ASDU: F_FR_NA_1 File ready <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | Figure 58 – ASDU: F_SR_NA_1 Section ready <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | Figure 59 – ASDU: F_SC_NA_1 Call directory, select file, call file, call section <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | Figure 60 – ASDU: F_LS_NA_1 Last section, last segment <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | Figure 61 – ASDU: F_AF_NA_1 ACK file, ACK section <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | Figure 62 – ASDU: F_SG_NA_1 Segment <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | Figure 63 – ASDU: F_DR_TA_1 Directory <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | 7.4 Selections from IEC 60870-5-5: Basic application functions Table 16 – Respond priorities of the controlled station <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | Table 17 – ASDUs involved in the station interrogation procedure <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | Figure 87 – Hierarchical presentation of the allocation of common addresses of ASDUs to LRUs (example) <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | Figure 88 – Sequential procedure of station interrogation to all LRUs of a specific controlled station (example) <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | Figure 89 – General counter model <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | Figure 90 – Sequential procedure of spontaneously transmitted integrated totals (mode\ufffdA) <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | Figure 91 – Sequential procedure of interrogation of integrated totals (mode\ufffdB) <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | Figure 92 – Sequential procedure of memorizing of integrated totals without reset (mode\ufffdC) Figure 93 – Sequential procedure of memorizing of integrated totals with reset (mode\ufffdC) <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | Figure 94 – Addressing of files (example) <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | Figure 95 – Request from protection equipment <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | Figure 96 – Request from substation automation system <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | Figure 97 – Structure of disturbance data of a protection equipment <\/td>\n<\/tr>\n | ||||||
141<\/td>\n | Figure 98 – Allocation of data types (ASDUs) of IEC 60870-5-103 to the sections of disturbance data files <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | Figure 99 – Allocation of the data unit type 23 to the directory F_DR_TA_1 <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | Table 18 – Allocation of type identification to type identification (IEC\ufffd60870\ufffd5\ufffd101\ufffdand\ufffdIEC\ufffd60870-5-103) Table 19 – Example for the definition of information object addresses (directory\ufffdor\ufffdsubdirectory) <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | Tabel 20 – Allocation of SOF status of file to SOF status of fault (IEC\ufffd60870\ufffd5\ufffd101\ufffdand\ufffdIEC\ufffd60870\ufffd5-103) <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | Figure 100 – Sequential procedure, transmission of the directory <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | Figure 101 – Sequential procedure, transmission of disturbance data files <\/td>\n<\/tr>\n | ||||||
151<\/td>\n | Figure 102 – Record of sequences of events in the section of a data file <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | Figure 103 – Sequential procedure, transmission of sequences of events <\/td>\n<\/tr>\n | ||||||
154<\/td>\n | Figure 104 – Section of a data file containing sequences of recorded analogue values <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | Figure 105 – Sequential procedure, transmission of sequences of recorded analogue values <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | Table 21 – Type identifications for background scan Figure 106 – Sequential procedure, read procedure <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | 8 Interoperability <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | 8.1 System or device 8.2 Network configuration 8.3 Physical layer <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | 8.4 Link layer 8.5 Application layer <\/td>\n<\/tr>\n | ||||||
165<\/td>\n | 8.6 Basic application functions <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | Annex A (informative) Proof of the synchronization stability of frame format class FT 1.2 A.1 Introduction A.1.1 UART definition <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | A.1.2 Frame format definitions FT 1.2 <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | A.1.3 Explanatory information on the proofs according to A.2 Proof of the shift insusceptibility of the specified characters A.2.1 Shift insusceptibility of START 68H <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | A.2.2 Shift insusceptibility of START 10H A.2.3 Shift insusceptibility of SINGLE CHARACTER E5H <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | A.2.4 Shift insusceptibility of SINGLE CHARACTER A2H <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | A.2.5 Shift insusceptibility of END 16H A.3 Proof of the mutual shift insusceptibility of the characters A.3.1 Shift insusceptibility of START 68H against START 10H <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | A.3.2 Shift insusceptibility of START 10H against START 68H A.3.3 Shift insusceptibility of SINGLE CHARACTER E5H against START 68H <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | A.3.4 Shift insusceptibility of START 68H against SINGLE CHARACTER E5H A.3.5 Shift insusceptibility of SINGLE CHARACTER E5H against START 10H <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | A.3.6 Shift insusceptibility of START 10H against SINGLE CHARACTER E5H A.3.7 Shift insusceptibility of SINGLE CHARACTER A2H against START 68H <\/td>\n<\/tr>\n | ||||||
178<\/td>\n | A.3.8 Shift insusceptibility of START 68H against SINGLE CHARACTER A2H A.3.9 Shift insusceptibility of SINGLE CHARACTER A2H against START 10H <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | A.3.10 Shift insusceptibility of START 10H against SINGLE CHARACTER A2H A.3.11 Shift insusceptibility of SINGLE CHARACTER A2H against SINGLE CHARACTER E5H <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | A.3.12 Shift insusceptibility of SINGLE CHARACTER E5H against SINGLE CHARACTER A2H A.4 Shift insusceptibility for frames with variable block length <\/td>\n<\/tr>\n | ||||||
184<\/td>\n | Annex B (informative) Admittance of line idle intervals between characters of frame format class\ufffdFT\ufffd1.2 Figure B.1 – Shift of a character caused by an inverted additional line idle bit Figure B.2 – Relation of even and odd bit pattern to the parity bit <\/td>\n<\/tr>\n | ||||||
185<\/td>\n | Figure B.3 – Shifted bit pattern <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | Annex ZA (normative) Normative references to international publications with their corresponding European … <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Telecontrol equipment and systems. Transmission protocols – Companion standard for basic telecontrol tasks<\/b><\/p>\n |