ASCE 9780784404607 2000
$39.00
Coupled Processes in Subsurface Deformation, Flow, and Transport
Published By | Publication Date | Number of Pages |
ASCE | 2000 | 355 |
Bai and Elsworth describe fundamental principles and analytical and numerical approaches that may be applied in representing the coupled interaction of deformation, flow, and transport in porous or fractured geologic media.
PDF Catalog
PDF Pages | PDF Title |
---|---|
6 | CONTENTS |
10 | ACKNOWLEDGEMENTS |
12 | PREFACE |
14 | NOMENCLATURE |
22 | 1 INTRODUCTION 1.1 STATE OF THE ART 1.1.1 Individual Process |
28 | 1.1.2 Multiple Processes |
31 | 1.1.3 Modeling Methodology |
34 | 1.2 CONCEPTUAL PRELIMINARIES 1.2.1 Concepts and Assumptions |
37 | 1.2.2 Fundamental Formulations |
39 | 1.2.3 Definition of Heterogeneity and Anisotropy |
41 | 1.2.4 Definition of Coupled Process |
42 | 1.3 NOTATION PRELIMINARIES 1.3.1 Tensor |
45 | 1.3.2 Sign Convention |
48 | 2 DEFORMATION 2.1 INTRODUCTION |
49 | 2.2 MATHEMATICAL FORMULATION 2.2.1 Homogeneous Media |
51 | 2.2.2 Heterogeneous Media |
57 | 2.3 PARAMETRIC STUDY 2.3.1 Effective Stress Law |
70 | 2.3.2 Parametric Relations in Coupled Processes |
77 | 2.3.3 Anisotropic Properties |
88 | 3 FLOW 3.1 INTRODUCTION 3.2 MATHEMATICAL FORMULATION |
89 | 3.2.1 Homogeneous Media |
100 | 3.2.2 Heterogeneous Media |
116 | 3.3 PARAMETRIC STUDY 3.3.1 Permeability |
130 | 3.3.2 Compressibility |
133 | 3.3.3 Anisotropic Effect |
136 | 4 TRANSPORT 4.1 INTRODUCTION 4.2 MATHEMATICAL FORMULATION |
137 | 4.2.1 Homogeneous Media |
143 | 4.2.2 Heterogeneous Media |
162 | 4.2.3 Comparative Analysis |
164 | 4.2.4 Stochastic Processes |
169 | 4.3 PARAMETRIC STUDY 4.3.1 Parameters for Homogeneous Media |
171 | 4.3.2 Sensitivity Analysis for Heterogeneous Media |
176 | 4.3.3 Convection-Dominated Transport |
184 | 5 ANALYTICAL SOLUTION 5.1 INTRODUCTION 5.2 LAPLACE TRANSFORM |
185 | 5.2.1 Flow |
189 | 5.2.2 Transport |
193 | 5.3 FOURIER TRANSFORM |
195 | 5.3.1 Flow |
198 | 5.3.2 Nonisothermal Flow and Deformation |
202 | 5.4 HANKEL TRANSFORM 5.4.1 Flow |
209 | 5.4.2 Flow and Deformation |
215 | 5.5 DIFFERENTIAL OPERATOR METHOD |
216 | 5.5.1 Flow |
226 | 5.5.2 Transport |
236 | 6 NUMERICAL SOLUTION 6.1 INTRODUCTION |
237 | 6.2 FINITE ELEMENT PRELIMINARIES 6.2.1 Numerical Integration 6.2.2 Shape Functions |
239 | 6.2.3 Global and Local Coordinate Mapping |
240 | 6.2.4 Construction of a System of Equations 6.3 FINITE ELEMENT FORMULATION 6.3.1 Deformation |
243 | 6.3.2 Flow |
246 | 6.3.3 Coupled Deformation and Flow |
252 | 6.4 FINITE ELEMENT MODEL 6.4.1 Cylindrical Model |
254 | 6.4.2 Generalized Plane Strain |
257 | 6.4.3 Dual-Porosity Media |
261 | 6.4.4 Two-Phase Fluid Flow |
272 | 6.5 MODEL VALIDATION 6.5.1 Analytical Solution of 1-D Consolidation |
276 | 6.5.2 Comparative Analysis |
286 | 7 APPLICATION 7.1 INTRODUCTION 7.2 TUNNEL SUBSIDENCE |
287 | 7.2.1 Problem Definition 7.2.2 Numerical Modeling |
289 | 7.2.3 Concluding Remarks |
290 | 7.3 SLOPE STABILITY 7.3.1 Problem Definition 7.3.2 Finite Element Simulation |
292 | 7.3.3 Case Analysis |
294 | 7.3.4 Concluding Remarks |
295 | 7.4 PERMEABILITY DETERMINATION 7.4.1 Unstressed Condition |
301 | 7.4.2 Stressed Condition |
308 | 7.4.3 Concluding Remarks |
309 | 7.5 WELL TESTING 7.5.1 Flow 7.5.2 Flow and Deformation |
314 | 7.5.3 Concluding remarks 7.6 CONTAMINANT TRANSPORT 7.6.1 Matrix Diffusion and Matrix Replenishment |
317 | 7.6.2 Brief Formulation |
320 | 7.6.3 Simulation |
323 | 7.6.4 Concluding Remarks |
326 | REFERENCES |
346 | INDEX A B C |
347 | D |
348 | E F |
349 | G H |
350 | I J L M |
351 | N O |
352 | P |
353 | Q R S |
354 | T |
355 | U V W |