BS EN 253:2019
$189.07
District heating pipes. Bonded single pipe systems for directly buried hot water networks. Factory made pipe assembly of steel service pipe, polyurethane thermal insulation and a casing of polyethylene
Published By | Publication Date | Number of Pages |
BSI | 2019 | 46 |
This document specifies requirements and test methods for straight lengths of factory made thermally insulated bonded single pipe assemblies for hot water networks in accordance with EN 13941-1, comprising a steel service pipe, polyurethane foam thermal insulation and a casing of polyethylene.
The pipe assembly can also include the following additional elements: measuring wires, spacers and diffusion barriers.
PDF Catalog
PDF Pages | PDF Title |
---|---|
2 | undefined |
7 | 1 Scope 2 Normative references |
8 | 3 Terms and definitions 4 Requirements 4.1 General |
9 | 4.2 Steel service pipe 4.2.1 Specification 4.2.2 Diameter 4.2.3 Wall thickness |
10 | 4.2.4 Surface condition |
11 | 4.3 Casing 4.3.1 Material properties 4.3.1.1 Material composition 4.3.1.2 Melt mass-flow rate 4.3.1.3 Thermal stability 4.3.1.4 Use of rework material 4.3.2 Casing properties 4.3.2.1 Nominal outside diameter |
12 | 4.3.2.2 Wall thickness 4.3.2.3 Appearance, surface finish, casing ends |
13 | 4.3.2.4 Elongation at break 4.3.2.5 Heat reversion 4.3.2.6 Stress crack resistance 4.4 Polyurethane (PUR) foam thermal insulation 4.4.1 Composition 4.4.2 Cell structure 4.4.2.1 General appearance 4.4.2.2 Cell size 4.4.2.3 Closed cell content 4.4.2.4 Voids and bubbles 4.4.3 Compressive strength |
14 | 4.4.4 Foam density 4.4.5 Water absorption at elevated temperature 4.5 Pipe assembly 4.5.1 General 4.5.2 Thermal insulation series |
15 | 4.5.3 Pipe ends without thermal insulation 4.5.4 Diameter and wall thickness of the casing |
16 | 4.5.5 Centre line deviation |
17 | 4.5.6 Expected thermal life and long term temperature resistance 4.5.6.1 General remarks 4.5.6.2 Shear strength |
18 | 4.5.7 Thermal conductivity in unaged condition 4.5.8 Thermal conductivity at artificially aged condition 4.5.9 Impact resistance 4.5.10 Surface conditions at delivery 4.5.11 Measuring wires for surveillance systems 4.5.12 Linear water tightness 5 Test methods 5.1 General conditions and test specimens 5.1.1 General conditions 5.1.2 Test specimens |
19 | 5.2 Casing 5.2.1 Appearance and surface finish 5.2.2 Elongation at break |
20 | 5.2.3 Carbon black dispersion, homogeneity 5.2.4 Stress crack resistance test |
21 | 5.3 Polyurethane (PUR) foam thermal insulation 5.3.1 Composition 5.3.2 Cell structure 5.3.2.1 Cell size 5.3.2.2 Closed cell content 5.3.2.3 Voids and bubbles |
22 | 5.3.3 Compressive strength 5.3.4 Foam density 5.3.5 Water absorption |
23 | 5.4 Pipe assembly 5.4.1 Axial shear strength 5.4.1.1 Test specimen 5.4.1.2 Test procedure 5.4.1.3 Calculation of shear strength |
24 | 5.4.1.4 Axial shear strength at 23 °C 5.4.1.5 Axial shear strength at 140 °C |
25 | 5.4.2 Shear strength of the pipe assembly after ageing 5.4.2.1 Specimen of pipe assembly for ageing 5.4.2.2 Test procedure 5.4.3 Thermal conductivity in unaged condition |
26 | 5.4.4 Thermal conductivity at artificially aged condition 5.4.5 Impact resistance 5.4.6 Linear water tightness |
28 | 6 Marking 6.1 General |
29 | 6.2 Steel service pipe 6.3 Casing 6.4 Pipe assembly |
30 | Annex A (informative) Relation between actual continuous operating conditions and accelerated ageing test conditions A.1 General A.2 Plateau in shear strength: impact of thermal stress |
31 | A.3 Further decline in shear strength from plateau level |
32 | A.4 Determination of Arrhenius activation energy on artificial pipe assembly A.5 Accelerated oxygen ingress on real pipe assembly in heated chamber |
34 | Annex B (informative)Guidelines for inspection and testing B.1 General B.2 Manufacturer’s type test B.3 Manufacturer’s quality control B.4 External inspection B.5 Manufacturer’s responsibility |
38 | Annex C (normative) Thermal conductivity of factory made pipe assemblies — Test procedure C.1 Scope C.2 Requirements (EN ISO 8497:1996, Clause 5) C.2.1 Test specimen (EN ISO 8497:1996, 5.1) C.2.2 Operating temperature (EN ISO 8497:1996, 5.2) C.2.3 Types of apparatus (EN ISO 8497:1996, 5.5) C.3 Apparatus (EN ISO 8497:1996, Clause 7) C.3.1 Guarded end apparatus C.3.2 Calibrated end apparatus |
39 | C.3.3 Dimensions (EN ISO 8497:1996, 7.2) C.3.4 Heater pipe surface temperature C.4 Test specimens (EN ISO 8497:1996, Clause 8) C.4.1 Conditioning (EN ISO 8497:1996, 8.4) C.4.2 Dimension measurement (EN ISO 8497:1996, 8.5) C.4.3 Surface temperature measurement C.4.4 Location of temperature sensors (EN ISO 8497:1996, 8.6) C.5 Procedure (EN ISO 8497:1996, Clause 9) C.5.1 Test length (EN ISO 8497:1996, 9.1.1) C.5.2 Diameter (EN ISO 8497:1996, 8.5) |
40 | C.5.3 Thickness of casing C.5.4 Ambient requirements (EN ISO 8497:1996, 9.2) C.5.5 Test pipe temperature (EN ISO 8497:1996, 9.3) C.5.6 Power supply (EN ISO 8497:1996, 7.9) C.5.7 Axial heat loss C.5.8 Test period and stability (EN ISO 8497:1996, 9.5.3) C.6 Calculations (EN ISO 8497:1996, Clause 11) C.6.1 Thermal conductivity (EN ISO 8497:1996, 3.5) |
41 | C.7 Symbols and units (EN ISO 8497:1996 Clause 4) |
43 | Annex D (informative)Waste treatment and recycling |