Shopping Cart

No products in the cart.

BSI PD CEN/TR 17797:2022

$215.11

Gas infrastructure – Consequences of hydrogen in the gas infrastructure and identification of related standardisation need in the scope of CEN/TC 234

Published By Publication Date Number of Pages
BSI 2022 130
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

This document is written in preparation of future standardization and provides guidance on the impact of the injection of H2 into the gas infrastructure from the input of gas into the on­shore transmission network up to the inlet connection of gas appliances.  Furthermore, it identifies the expected revision need of the existing CEN/TC 243 standards as well as the need of further new standardisation deliverables.  It examines the effects on each part of the gas infrastructure in the scope of the CEN/TC 234 Working Groups 1 to 12 inclusive, based on available studies, reports and research. Due to several limitations at different hydrogen concentrations, the impacts are specified.  For some specific impact, pre­standardization research is needed.  By convention, for this technical report, the injection of pure hydrogen, i. e. without trace components is considered.  The information from this report is intended to define the CEN/TC 234 work program for the coverage of H2NG in relation to the scope of the CEN/TC 234 and its WGs.  NOTE Progress on hydrogen will develop over time. In principle this will be reflected in the standardisation process in CEN/TC 234.

PDF Catalog

PDF Pages PDF Title
2 undefined
9 1 Scope
2 Normative references
3 Terms, definitions and abbreviations
3.1 Terms and definitions
12 3.2 Symbols and abbreviations
4 Executive summary
14 5 General considerations for the entire gas infrastructure
5.1 Explosion protection and prevention
5.1.1 General principles
15 5.1.2 Safety characteristics of natural gas-hydrogen mixtures and their impact on explosion prevention
5.1.2.1 General
5.1.2.2 Prevention of the formation of explosive atmospheres
16 5.1.2.3 Avoidance of the ignition of explosive atmospheres
5.1.3 Consequences of H2 and H2NG in NG infrastructure for explosion protection related to identified H2 concentrations
5.1.3.1 Hydrogen content up to 10 Vol.%
17 5.1.3.2 Hydrogen content above 10 Vol.% up to full replacement of natural gas by hydrogen (100 % hydrogen)
5.2 N2NG mixtures in contact with materials — Pressure integrity, gas tightness and functionality
5.2.1 General
5.2.1.1 Hydrogen tolerance of pipeline materials
19 5.2.1.2 Hydrogen tolerance of fitting materials
20 5.2.2 Steel
5.2.2.1 General
21 5.2.2.2 Mechanical behaviour
26 5.2.2.3 Welding of steel
28 5.2.3 PE and PAU
5.2.4 Alloys
5.2.5 Information on deterioration and chemical aggression of elastomers
5.2.6 Others
5.3 Volume in relation to energy content — consequences for the capacity and function of the gas transportation, underground gas storage and distribution system
29 6 Technical considerations per topic applicable for the different parts of the gas infrastructure (along chain)
6.1 General
6.2 Gas quality
6.2.1 Scope of considerations — Gas quality — EN 16726
30 6.2.2 Technical considerations — Identified H2NG
6.2.2.1 Relative density
32 6.2.2.2 Water dew point
33 6.2.2.3 Hydrocarbon dew point
34 6.2.2.4 Methane number
35 6.3 Gas compression
6.3.1 Scope of consideration — Gas compression
36 6.3.2 Technical considerations — Identified H2NG aspects — Gas compression
6.4 Gas pipelines with MOP over 16 bar — Gas transmission
6.4.1 Scope of consideration — Gas transmission — EN 1594
6.4.2 Hydrogen piping and pipelines — ASME B31.12
6.4.2.1 General
37 6.4.2.2 Fracture mechanics of hydrogen transporting pipelines
6.4.2.3 Requalifying existing pipelines for hydrogen service
6.4.3 Technical considerations — Identified H2NG aspect — Gas transmission
6.4.3.1 Hydrogen-enhanced fatigue of pipelines
39 6.4.3.2 Approach for fit for purpose of existing natural gas pipelines with respect to hydrogen
40 6.5 Gas pressure control
6.5.1 Scope of consideration — Gas pressure control — EN 12186 and EN 12279
41 6.6 Gas metering
6.6.1 Scope of consideration — Gas metering — EN 1776
6.6.2 Technical considerations — Identified H2NG aspects — Gas metering
42 6.7 Gas supply systems up to and including 16 bar and pressure testing
6.7.1 Statement for gas pipelines with MOP up to and including 16 bar for all concentrations
43 6.7.2 Requalifying existing pipelines for hydrogen service
6.7.3 Technical consideration — Scoping considerations — EN 12007-1 to -4, CEN/TS 12007-6, EN 12327 and EN 12732
6.7.3.1 General
44 6.7.3.2 EN 12007-1:2012: General Functional Requirements for gas infrastructure up to and including 16 bar
6.7.3.3 EN 12007-2 (Polyethylene Pipe) and CEN/TS 120076 (Unplasticized Polyamide Pipe)
45 6.7.3.4 EN 12007-3:2013 Steel pipe infrastructure
6.7.3.5 EN 12007-4 – Renovation
46 6.7.3.6 EN 12327:2012 — Pressure testing, purging, commissioning and decommissioning
47 6.7.3.7 Welding on steel pipes from as distribution perspective
6.8 Service lines
6.8.1 Scoping considerations — Service lines — EN 12007-5
48 6.8.2 Technical considerations — Identified H2NG aspects integrity and safety, reliability and operation
6.8.2.1 Design
6.8.2.2 Materials and components
6.8.2.3 Regulators and meters
49 6.8.2.4 Pipe sizing
6.8.2.5 Identification
6.8.2.6 Measurement equipment
6.9 Industrial piping
6.9.1 Scope of consideration – Industrial piping – EN 15001-1 and EN 15001-2
50 6.9.2 Technical considerations — Industrial piping
6.9.2.1 Industrial piping — Materials — General remarks
6.9.2.2 Industrial piping — Requirements for gas/hydrogen mixtures- considerations to maximum hydrogen content
51 6.10 Gas pipework for buildings
6.10.1 Scope of consideration — Gas pipework for buildings – EN 1775
6.10.2 Technical considerations — Gas pipework for buildings
6.11 Underground gas storage
6.11.1 Scope of consideration for underground gas storage — Generals EN 1918-1 to -5
52 6.11.2 Technical considerations — Underground gas storage
6.11.2.1 Pore storage and caverns
6.11.2.2 Wells
6.11.2.3 Gas piping
53 6.11.2.4 Compression units
6.11.2.5 Dehydration units
6.11.2.6 Desulfurization units
6.11.2.7 Metering
6.11.2.8 Other plant components
6.11.3 Identified H2NG impacts — Underground gas storage
54 6.12 Safety management and integrity management
6.12.1 Scope of considerations
6.12.2 Safety management system — Management of change
6.12.2.1 General
6.12.2.2 Awareness
55 6.12.2.3 Competence
6.12.2.4 Identification
6.12.2.5 Safety procedures
6.12.2.6 Emergency response
6.12.2.7 Connecting systems
6.12.3 Pipeline integrity management system
6.12.3.1 Safety aspects
56 6.12.3.2 Integrity assessment
6.12.3.3 The integrity condition of the pipeline
6.12.3.4 Leak detection surveys
6.12.3.5 Monitoring
7 Conclusions — H2 suitability of components, materials and procedures used in the gas infrastructure related to identified H2 concentrations
7.1 General
57 7.2 H2 suitability —Gas quality
7.2.1 H-gas quality – Admixture of H2
58 7.2.2 Hydrogen quality in converted natural gas grids
59 7.3 H2 suitability — Gas compressor stations
7.3.1 General
60 7.3.2 Less than 1 % hydrogen in natural gas
7.3.3 Over 1 Vol.-% up to 5 Vol.-% H2 in natural gas
63 7.4 H2 suitability — Gas transmission pipelines with MOP over 16 bar
64 7.5 H2 suitability — Gas pressure control
7.5.1 Introduction
65 7.5.2 General
7.5.3 Up to 10 Vol.% H2 in natural gas
66 7.5.4 Over 10 Vol.-% up to 100 % H2 in natural gas
67 7.6 H2 suitability — Gas metering
7.7 H2 suitability — Gas pipelines with MOP up to and including 16 bar
7.7.1 A Summary of findings for gas pipeline systems up to and including 16 bar and pressure testing (CEN/TC 234 WG 2)
68 7.8 H2 suitability — Service lines
7.9 H2 suitability — Industrial piping
69 7.10 H2 suitability — Gas pipework for buildings
7.11 H2 suitability — Underground gas storage
7.11.1 General
7.11.2 Between 0 % and 1 % hydrogen in natural gas
70 7.11.3 Between 1 % and 20 % hydrogen in natural gas
7.11.4 Above 20 % hydrogen up to full replacement of natural gas by hydrogen (100 % hydrogen)
8 Revision needs of existing CEN/TC 234 standards and additional deliverables for the H2-readiness of the gas infrastructure
8.1 Action need
71 8.2 Gas quality — Expected revision of EN 16726:2015+A1:2018
8.3 Gas compression — Expected revision of EN 12583:2014
72 8.4 Pipelines for maximum operating pressure over 16 bar — Expected revisions of EN 1594:2013
73 8.5 Gas pressure control — Expected revisions of EN 12186:2014 and EN 12279:2000
75 8.6 Gas measuring systems — Expected revision of EN 1776:2015
76 8.7 Pipelines for maximum operating pressure up to and including 16 bar — Expected revision of EN 12007 Parts 1 to 4 and EN 12327:2012
79 8.8 Pressure testing, commissioning and decommissioning procedures — Expected revision of EN 12327:2012
80 8.9 Welding of steel — Expected revision of EN 12732:2013
8.10 Service lines — Expected revision of EN 12007-5:2014
83 8.11 Gas installation pipework– Expected revision of FprEN 15001-1:2019 and EN 15001-2:2019
87 8.12 Gas pipework for buildings — Expected revision of EN 1775
88 8.13 Underground gas storage– Expected revision of EN 1918-1:2016 to -5:2016
93 8.14 Safety and Integrity Management System — Expected revision of EN 16348 and EN 15399 by prEN 17649 (merged standard)
94 Annex A (informative)Any issue coming up during the discussion and outside of the TC 234 scope
95 Annex B (informative)Safety characteristics of natural gas-hydrogen mixtures
96 Annex C (informative)Operating principles for gas warning devices [2]
C.1 General
C.2 Gas warning devices in explosion protection
C.3 Calibration and adjustment of Gas warning devices
97 C.4 Where to install the gas sensors for monitoring hazardous areas?
98 Annex D (informative)Hydrogen pressure versus hydrogen percentage
99 Annex E (informative)Hydrogen pressure versus hydrogen fugacity
101 Annex F (informative)An example of the use of an existing gas pipeline for hydrogen gas
103 Annex G (informative)Use of polyamide (PA-U) in gas piping systems in relation to hydrogen, methane or their mixtures
G.1 General
G.2 Chemical effect of hydrogen (H2), methane (CH4) or their mixtures on PA-U
G.2.1 General statement against hydrogen embrittlement
G.2.2 Chemical resistance tables
104 G.2.3 Chemical resistance studies for the effect of hydrogen or methane or their mixtures on PA-U
G.2.3.1 Effect of H2 on high molecular weight Polyamide
105 G.2.3.2 Effect of hydrogen or methane or their mixtures on PA-U11
107 G.3 Permeation of hydrogen or methane or their mixtures through PA-U
G.3.1 General
G.3.2 Permeation of hydrogen or methane through PA-U12
108 G.3.3 Permeation of H2 or CH4 or their mixtures through PA-U11
110 G.3.4 Multilayer pipe (MLP) concepts with H2 barrier layer
G.4 Conclusion about effect of hydrogen or methane or their mixtures on PA-U11 and PA-U12
G.5 Further relevant PA-U behaviour
G.5.1 Squeeze-off
G.5.1.1 Squeeze-off behaviour in air
111 G.5.1.2 Squeeze-Off behaviour in hydrogen
112 G.5.1.3 Squeezed off area and effect on creep gas levels for PE100RC and PAU12 pipes
113 G.5.2 Training and qualification of welding personnel
114 Annex H (informative)Netbeheer Nederland Study for biomethane and 100 % hydrogen
116 Annex I (informative)Responsibility of CEN/TC 234 ‘Gas infrastructure’ Working groups for the parts of the gas infrastructure along the chain
117 Annex J (informative)Symbols and abbreviations
BSI PD CEN/TR 17797:2022
$215.11