BSI PD IEC TR 61850-90-14:2021:2022 Edition
$215.11
Communication networks and systems for power utility automation – Using IEC 61850 for FACTS (flexible alternate current transmission systems), HVDC (high voltage direct current) transmission and power conversion data modelling
Published By | Publication Date | Number of Pages |
BSI | 2022 | 256 |
PDF Catalog
PDF Pages | PDF Title |
---|---|
2 | undefined |
4 | CONTENTS |
13 | FOREWORD |
15 | INTRODUCTION |
16 | 1 Scope 1.1 Namespace name and version |
17 | 1.2 Code Component distribution Tables Table 1 – Attributes of (Tr)IEC 61850-90-14:2020A namespace Table 2 – Tracking information of (Tr)IEC 61850-90-14:2020A namespace building-up |
18 | 2 Normative references |
19 | 3 Terms, definitions, variable symbols and abbreviated terms 3.1 Terms and definitions 3.2 Variable symbols |
20 | 3.3 Abbreviated terms |
22 | 4 FACTS Controllers and power conversion definition and specific requirements – Definitions of FACTS and power conversions 4.1 Flexible AC transmission system 4.1.1 General 4.1.2 Examples of FACTS for shunt compensation 4.1.3 Examples of series compensation |
23 | 4.2 Power conversions systems 5 Scope clarification and definition 5.1 General Figures Figure 1 – Conceptual view of communication paths considered in this report |
24 | 5.2 Communication requirements and data flow 5.2.1 General Figure 2 – Levels and logical interfaces in substation automation systems |
25 | 5.2.2 Mapping to interfaces defined in IEC 61850-5 Figure 3 – Data flow of a FACTS / Power Conversion controller |
26 | 5.3 SCL modelling requirements 6 Shared use cases for FACTS controllers and Power Conversion 6.1 Commonly used actors Figure 4 – Shared use cases for FACTS controllers and Power Conversion |
27 | Table 3 – Actors used in use cases |
28 | 6.2 Use case: Control system redundancy 6.2.1 Communication redundancy 6.2.2 Functional application redundancy Figure 5 – Hierarchal view of commonly used actors |
29 | 6.3 Use case: Control location and authority Figure 6 – Typical redundant FACTS/Power Conversion control system setup |
30 | Figure 7 – Authority for control of devices fromdifferent control levels and locations |
31 | 6.4 Use case: System status and generic sequence processing 6.4.1 General Figure 8 – Typical scheme for implementation of control authority for function groups |
32 | Figure 9 – System status / generic sequence processing |
33 | Table 4 – Use case: System status and generic sequence processing |
35 | 6.4.2 ASEQ Application Overview |
36 | 6.4.3 Application example HVDC Figure 10 – ASEQ Application Overview (using the most important Data Objects) |
37 | Figure 11 – Exemplary sequence diagram, not applicable to all use cases |
39 | 6.4.4 Application example Shunt connected FACTS device Figure 12 – Operating states of a FACTS shunt device |
41 | Figure 13 – Use case diagrams of State use case |
42 | 6.5 Use case: Cooling system 6.5.1 General Table 5 – Use case: State |
43 | Figure 14 – Cooling control use cases Table 6 – Use case: Cooling system |
45 | 6.5.2 List of logical nodes for modelling of a Water based cooling system 6.5.3 Example of modelling a cooling system Table 7 – Logical nodes for modelling a water-based cooling system |
46 | Figure 15 – Cooling control modelling example |
47 | 6.6 Use case: Control and supervision of Harmonic filter Figure 16 – Harmonic filter control and supervision |
48 | 6.7 Use case: Control of external devices as part of automatic reactive power control 6.7.1 General Table 8 – Use case: Control and supervision of Harmonic filter |
49 | Figure 17 – Use case Control of external reactive components |
50 | Table 9 – Use case: Control of external banks mode |
51 | 6.7.2 Modelling example for external device control of a FACTS shunt device Figure 18 – Modelling external banks for reactive power optimization. Table 10 – Process data for Control of external banks mode |
52 | 6.8 Use case: Converter status during degraded operation Figure 19 – Use case Converter status |
53 | 6.9 Use case: Power Semiconductor application monitoring 6.9.1 General Figure 20 – Example of a hierarchical arrangement of power electronic units Table 11 – Use case: Get Converter Status |
54 | Figure 21 – Arrangement of 12 thyristor valvesin a 12-pulse converter configuration |
55 | Figure 22 – Use cases for semiconductor application monitoring Table 12 – Use case: Semiconductor application monitoring |
57 | 6.9.2 Equipment Indications and Properties Table 13 – Thyristor controlled reactive components Table 14 – Process information for Thyristor controlled reactive component |
58 | 6.9.3 Modelling requirements, results, conclusion 6.10 Use case: Coordinated control between FACTS and other Power Conversion devices 6.10.1 General Figure 23 – Schematic view of two SVC devices connected in parallel. |
59 | Figure 24 – Coordination between two FACTS / Power Conversion Figure 25 – Use case diagram for coordinated FACTS device operation |
60 | 6.10.2 Use case descriptions Figure 26 – Coordination signals between two SVCs Table 15 – Coordinated FACTS device operation use case |
61 | 6.10.3 Optimized signal list and process information for modelling Figure 27 – Optimized signal list for IEC 61850 |
62 | 6.11 FACTS and Power Conversion Protection 6.11.1 General 6.11.2 Use case Protective action Table 16 – Process information for coordinated control mode |
63 | Figure 28 – Use cases for Control System Protective Actions Table 17 – Use cases for Control System Protective Actions |
64 | 6.11.3 Modelling summary 7 FACTS 7.1 General |
65 | 7.2 Shunt connected FACTS devices 7.2.1 General 7.2.2 Overview Figure 29 – V-I diagram of a generic SVC Table 18 – Classification of FACTS Controllers |
66 | 7.2.3 Use cases for Shunt Connected FACTS device Figure 30 – V-I diagram of a generic STATCOM Figure 31 – Use cases for substation control of a shunt connected FACTS device. |
67 | Table 19 – Main use cases of FACTS Shunt device |
68 | Figure 32 – Example of operating states of a FACTS shunt device Figure 33 – Example of control modes of a shunt connected FACTS device visualized as a state machine |
69 | Figure 34 – Use cases for changing states of FACTS device |
70 | Figure 35 – Change of control mode use case Table 20 – Changing states of FACTS device use cases |
71 | Table 21 – Main control functions Table 22 – Supplementary control functions Table 23 – Additional control mode functions Table 24 – Use case: Control Mode selection |
72 | Figure 36 – Sub-use cases of Configuration use case Table 25 – Change Control mode process data |
73 | Table 26 – Use case: Configuration of control mode |
74 | Figure 37 – Automatic Reactive Power Control use case Table 27 – Automatic Reactive Power Control process data |
75 | Figure 38 – Non-automatic control mode use case Table 28 – Non-automatic control mode use case Table 29 – Non-automatic control mode setpoints |
76 | Figure 39 – Simplified fixed reactive power regulator block diagram Figure 40 – Simplified voltage regulator block diagramof automatic voltage control mode for an SVC Table 30 – Reactive power control mode process data |
77 | Table 31 – Additional functions in Automatic Voltage Control mode Table 32 – Voltage Control mode process data |
78 | Figure 41 – Shunt connected FACTS device operating characteristicwith slow susceptance/reactive power regulator Table 33 – Process data for slow susceptance regulator modeor reactive power regulator |
79 | Figure 42 – Example of automatic voltage control system with additional reference signal for POD Table 34 – POD mode settings and controls |
80 | Figure 43 – Activation of Gain Optimizer Function Figure 44 – Reset Gain Command Interaction Diagram |
81 | Table 35 – Use case: Gain Table 36 – Gain Supervision mode data objects Table 37 – Gain Optimizer mode data objects |
82 | Table 38 – Protective Control Functions of SVC use cases |
83 | 7.3 Series connected FACTS devices 7.3.1 Overview 7.3.2 Use case of Series Compensation Table 39 – Protective Control Functions of a VSC use cases |
84 | Figure 45 – Series Compensation Use case Table 40 – Use case: Series Compensation |
85 | Figure 46 – Use cases for Fixed Series Capacitors |
86 | Figure 47 – Use case for Capacitor Discharge function Table 41 – Use case: Fixed Series compensation |
87 | Figure 48 – Use case for By-passing Table 42 – Use case: Capacitor Discharge Function |
88 | Table 43 – Bypassing of series capacitor |
89 | Figure 49 – Sub use cases for Lock-out use case Table 44 – Use case: Lock-out and temporary block insertion |
91 | Figure 50 – Sub use cases for auto reinsertion |
92 | Figure 51 – Interaction of Automatic Reinsertion function with other functions Table 45 – Use case: Auto reinsertion |
93 | Figure 52 – Example of states in Automatic reinsertion function |
94 | Table 46 – Transition description for Figure 55 |
95 | Figure 53 – SLD of Fast Protective Equipment |
96 | Figure 54 – Use case for Fast Protective equipment |
97 | Figure 55 – SLD symbol for Metal Oxide Varistor Table 47 – Use case: Fast Protective Equipment |
98 | Figure 56 – Zink Oxide Varistor use case |
99 | Figure 57 – MSSR Use case diagram Table 48 – Use case: Zink Oxide Varistor |
100 | Table 49 – Use case: MSSR Table 50 – Indications and measurements |
101 | 7.3.3 Series Capacitors protections Figure 58 – Additional use cases for TCSC Table 51 – Use case: TCSC |
102 | Table 52 – Overview of typical series capacitor bank protections,based on IEC 60143-2 |
103 | Figure 59 – SC Protection function Interface |
104 | Table 53 – Use case: SC protection functions |
105 | Table 54 – Series protections modelling guideline |
106 | 8 Power Conversion 8.1 Power Converters 8.1.1 Overview Figure 60 – Varistor Overload Protection use case Figure 61 – Varistor Failure Protection use case |
107 | 8.1.2 Power converter use cases with signal and data item descriptions Figure 62 – Generic application of Power Conversion |
108 | Figure 63 – Use Active / reactive power operation mode selection Table 55 – Use case: Active / reactive power operation mode selection |
110 | Figure 64 – Active power control use case |
111 | Table 56 – Use case: Active power control |
112 | Figure 65 – P-f characteristic |
113 | Figure 66 – P-V characteristic Table 57 – New data items for P-f-characteristics |
114 | Figure 67 – Example: Simple 4-point P-DCVol characteristic Table 58 – New data items for P-V |
115 | Figure 68 – Example: Sophisticated 9-point P-DCVol characteristic Table 59 – New data items for P-DCVol |
116 | Figure 69 – P_Fixed Table 60 – New data items for fixed active power Table 61 – New data items for fixed DC current Table 62 – New data items for Active power (general) |
117 | Figure 70 – Reactive power control use case |
118 | Figure 71 – Q-V characteristic Table 63 – Reactive Power control use case (Power Conversion) |
119 | Figure 72 – Q_Fixed Table 64 – New data items for Q-V Table 65 – New data items for Q_fixed |
120 | Figure 73 – Phi_Fixed Table 66 – New data items for Q_Band Table 67 – New data items for Phi_Fixed |
121 | Figure 74 – V_Band Table 68 – New data items for V_Band Table 69 – New data items for Reactive power (general), |
122 | Table 70 – Use case Reactive power (Power Conversion) |
123 | Figure 75 – Use case |
124 | 8.2 HVDC 8.2.1 Overview Table 71 – Intermediate DC circuit use case |
125 | 8.2.2 HVDC use cases with signal and data item descriptions Figure 76 – Typical HVDC setup |
126 | Figure 77 – Use case Power direction change |
127 | Table 72 – Use case Power direction change |
128 | Figure 78 – Use case Run-up/Run-back modules |
129 | Table 73 – Use case Run-up/Run-back modules |
130 | Figure 79 – General AEPC functional characteristic |
131 | Figure 80 – Use case Automatic Emergency Power Control Table 74 – Use case Automatic Emergency Power Control |
133 | Table 75 – AEPC data modelling example |
135 | Figure 81 – DC Line fault recovery sequence |
136 | Table 76 – Use case: DC Line fault recovery sequence |
138 | Figure 82 – Examples for typical HVDC DC-Yard configurations |
139 | Figure 83 – DC Yard configuration Table 77 – Use case: DC Yard configuration |
140 | Figure 84 – Coordinated mode switchover |
141 | Table 78 – Use case: Coordinated mode switchover |
142 | Figure 85 – Function mode switchover |
143 | Table 79 – Use case: Function mode switchover |
147 | Figure 86 – Tap changer control and supervision Table 80 – Use case: Tap changer control and supervision |
149 | 8.3 SFC – Static Frequency Converter 8.3.1 Overview 8.3.2 SFC use cases with signal and data item descriptions Figure 87 – Typical SFC setup |
150 | Figure 88 – Control by external reference Table 81 – Use case: Control by external reference |
151 | 9 Data model 9.1 Abbreviated terms used in data object names 9.2 Logical node preliminaries 9.2.1 Package LogicalNodes_90_14 Table 82 – Normative abbreviations for data object names |
152 | Figure 89 – Class diagram LogicalNodes_90_14::LogicalNodes_90_14 |
153 | Figure 90 – Class diagram AbstractLNs::AbstractLNs |
154 | Table 83 – Data objects of FACTSandPowerConversionLN |
155 | Table 84 – Data objects of ReactiveComponentInterfaceLN |
156 | Table 85 – Data objects of EmergencyPowerControl_PowerRunUpRunBackLN |
157 | Figure 91 – Class diagram LNGroupA::LNGroupANew |
158 | Figure 92 – Class diagram LNGroupA::LNGroupAExt |
159 | Table 86 – Data objects of ARCOExt |
161 | Table 87 – Data objects of AFLK |
162 | Table 88 – Data objects of AMSR |
164 | Table 89 – Data objects of APOD |
165 | Table 90 – Data objects of AEPC |
167 | Table 91 – Data objects of ARUB |
168 | Table 92 – Data objects of ASEQ |
170 | Table 93 – Data objects of ATCCExt |
173 | Table 94 – Data objects of ARPC |
174 | Table 95 – Data objects of AVCOExt |
176 | Figure 93 – Class diagram LNGroupC::LNGroupCNew |
177 | Table 96 – Data objects of CCGRExt |
179 | Table 97 – Data objects of CCAP |
180 | Table 98 – Data objects of CJCL |
182 | Table 99 – Data objects of CFPC |
185 | Table 100 – Data objects of CREL |
186 | Figure 94 – Class diagram LNGroupF::LNGroupFNew Table 101 – Data objects of FFUN |
188 | Figure 95 – Class diagram LNGroupP::LNGroupPNew |
189 | Table 102 – Data objects of PLFR |
191 | Table 103 – Data objects of PMHE |
192 | Table 104 – Data objects of PMHT |
194 | Table 105 – Data objects of PMOV |
195 | Table 106 – Data objects of PFPE |
196 | Figure 96 – Class diagram LNGroupR::LNGroupRNew |
197 | Table 107 – Data objects of RBPF |
198 | Table 108 – Data objects of RRIN |
200 | Figure 97 – Class diagram LNGroupS::LNGroupSNew |
201 | Table 109 – Data objects of SCND |
202 | Table 110 – Data objects of SFLW |
203 | Table 111 – Data objects of SFPE |
205 | Table 112 – Data objects of SPES |
206 | Figure 98 – Class diagram LNGroupT::LNGroupT |
207 | Table 113 – Data objects of TCND |
208 | Figure 99 – Class diagram LNGroupX::LNGroupXNew |
209 | Table 114 – Data objects of XFPE |
211 | Table 115 – Data objects of XDCC |
212 | Figure 100 – Class diagram LNGroupZ::LNGroupZNew |
213 | Figure 101 – Class diagram LNGroupZ::LNGroupZNew2 Table 116 – Data objects of ZCONExt |
215 | Table 117 – Data objects of ZHAF |
217 | Table 118 – Data objects of ZLINExt |
219 | Table 119 – Data objects of ZMOV |
220 | Table 120 – Data objects of ZTCRExt |
222 | Table 121 – Data objects of ZCAPExt |
223 | Table 122 – Data objects of ZREAExt |
224 | 9.3 Data object name semantics and enumerations 9.3.1 Data semantics Table 123 – Attributes defined on classes of LogicalNodes_90_14 package |
233 | 9.3.2 Enumerated data attribute types |
234 | Table 124 – Literals of ActivePowerModKind Table 125 – Literals of AutoReinsertionKind |
235 | Table 126 – Literals of ChargingDCCircuitStateKind Table 127 – Literals of ConfigurationDCCircuitStateKind Table 128 – Literals of ConnectionDCStateKind |
236 | Table 129 – Literals of ConverterTypKind Table 130 – Literals of EPCModKind Table 131 – Literals of EPCTypKind |
237 | Table 132 – Literals of ForcedOperationControlModKind Table 133 – Literals of GenerationDCStateKind Table 134 – Literals of HarmonicFilterTypKind |
238 | Table 135 – Literals of OperationCommandKind Table 136 – Literals of OperationModKind Table 137 – Literals of OperationStateKind |
239 | Table 138 – Literals of PowerDirectionalModKind Table 139 – Literals of ReactivePowerModKind Table 140 – Literals of RubModKind |
240 | 10 SCL Extensions Table 141 – Literals of RubTypKind Table 142 – Literals of SequenceStateKind Table 143 – Literals of ThyristorBranchFunctionKind |
241 | Annex A (informative)Introduction to FACTS applications A.1 Static Var Compensator overview Figure A.1 – Example SVC circuit diagram of an SVC |
242 | Figure A.2 – SLD of example SVC with reference designations |
243 | A.2 Static Synchronous Compensator overview Figure A.3 – Simplified STATCOM Circuit diagram |
244 | Figure A.4 – Example of SLD for a STATCOM with reference designations |
245 | A.3 Fixed series compensation Figure A.5 – Hybrid solution with two VSC, TSC and TCR branch Figure A.6 – Single Line Diagram of a one segment Series Capacitor. |
246 | A.4 Mechanically Switched Series Reactor (MSSR) A.5 Thyristor Controlled Series Capacitor (TCSC) Figure A.7 – Generic SLD of MSSR/OLC FACTS device |
247 | Figure A.8 – SLD of TCSC and transmitted power vs. transmission angle |
248 | Figure A.9 – Generic TCSC control system |
249 | Annex B (informative)Modelling guideline and examples B.1 Indication and control of breakers and switches B.2 Power transformer B.3 Metering and measured values B.4 Examples of modelling of FACTS Shunt devices Table B.1 – Suggested modelling of measured and meter values. |
250 | Figure B.1 – Logical nodes representing SLD equipment SVC |
251 | Figure B.2 – Modelling example of SVC functionality |
252 | Figure B.3 – Logical nodes representing SLD equipment, STATCOM |
253 | B.5 Example of modelling of Fixed Series Compensation Figure B.4 – Logical nodes representing SLD equipment,Control and Protection, Fixed SC |
254 | B.6 Examples of modelling of HVDC transmission Figure B.5 – Logical Nodes representing HVDC specific equipment and functionality |
255 | Bibliography |