IEEE 18-2012
$65.54
IEEE Standard for Shunt Power Capacitors (Superseded Redline)
Published By | Publication Date | Number of Pages |
IEEE | 2012 | 39 |
Revision Standard – Inactive-Reserved. Power capacitors rated 216 V or higher, 2.5 kvar or more, and designed for shunt connection to alternating-current transmission and distribution systems operating at a nominal frequency of 50 Hz or 60 Hz, are considered.
PDF Catalog
PDF Pages | PDF Title |
---|---|
1 | IEEE Std 18-2012 front cover |
3 | Title page |
6 | Notice to users Laws and regulations Copyrights Updating of IEEE documents Errata Patents |
8 | Participants |
10 | Introduction |
11 | Contents |
13 | IMPORTANT NOTICE 1. Scope 2. Normative references |
14 | 3. Definitions |
15 | 4. Service conditions 4.1 Normal service conditions |
16 | 4.2 Abnormal service conditions 5. Ratings and capabilities 5.1 Standard ratings |
17 | 5.2 Capacitance tolerance 5.3 Maximum operating voltage, current and kvar 5.4 Typical voltage and reactive power ratings for capacitors |
18 | 5.5 Insulation classes 5.6 Frequency 5.7 Ambient temperature 5.7.1 Maximum ambient |
19 | 5.7.2 Minimum ambient 5.8 Overvoltage and overcurrent withstand capabilities 6. Manufacturing 6.1 Thermal stability 6.2 Basic impulse insulation level |
20 | 6.3 Internal discharge devices 6.4 Radio influence voltage (RIV) 6.5 Bushings 6.5.1 Number of bushings 6.5.2 Electrical characteristics 6.6 Connection provisions 6.6.1 Terminal size |
21 | 6.6.2 Single bushing capacitors 6.6.3 Indoor capacitors 6.6.4 Metal-enclosed capacitor equipment |
22 | 6.7 Internal fuses for internally fused capacitors 6.7.1 General 6.7.2 Disconnecting requirements 6.7.3 Withstand requirementsThe withstand requirements are as follows: |
23 | 6.8 Information to be provided with capacitor and capacitor equipment 6.8.1 Nameplate marking for capacitor unit 6.8.2 Information to be supplied with internally fused capacitors or capacitor units for fuseless capacitor equipment |
24 | 6.8.2.1 Internally fused capacitors 6.8.2.2 Capacitor units for fuseless capacitor equipment 6.8.3 Non-PCB impregnant identification 6.8.4 Nameplate for capacitor equipment 6.9 Dimensions 6.9.1 Mounting hole spacing 6.9.2 Non-enclosed substation equipment |
27 | 6.10 Electrical bonding provisions 6.11 Color 7. Testing 7.1 Design tests 7.1.1 Impulse withstand test |
28 | 7.1.1.1 Impulse polarity 7.1.1.2 Impulse waveshape 7.1.1.3 Impulse measurement |
29 | 7.1.2 AC voltage test 7.1.3 Thermal stability test 7.1.3.1 Selection of samples 7.1.3.2 Test method 7.1.3.2.1 Mounting conditions 7.1.3.2.2 Ambient temperature 7.1.3.2.3 Test voltage |
30 | 7.1.3.2.4 Temperature measurement 7.1.4 Radio influence voltage (RIV) test 7.1.4.1 Equipment 7.1.4.2 Test voltage 7.1.4.3 Method 7.1.4.4 Precautions 7.1.4.5 RIV limits 7.1.5 Short circuit discharge test |
31 | 7.1.6 Performance test 7.1.6.1 Test sample 7.1.6.2 Conditioning of the sample before the test 7.1.6.3 Overvoltage test |
32 | 7.1.6.4 Acceptance criteria 7.1.6.5 Validity of test 7.1.6.5.1 Dielectric design limits 7.1.6.5.2 Test unit design limits |
33 | 7.1.7 Fuse disconnect test for internally fused capacitors 7.1.7.1 Validity of test 7.1.7.2 Conditioning of the sample before test 7.1.7.3 Test procedures |
34 | 7.1.7.4 Capacitance measurement 7.1.7.5 Voltage test across the open fuse 7.1.7.6 Inspection of the unit 7.2 Production tests 7.2.1 Short-time overvoltage test |
35 | 7.2.1.1 Terminal-to-terminal test 7.2.1.2 Terminals-to-case test (not applicable to capacitors having one terminal common to the case) 7.2.2 Capacitance test 7.2.3 Leak test |
36 | 7.2.4 Discharge resistor test 7.2.5 Loss determination test 7.2.6 Fuse capability tests for internally fused capacitors |
37 | Annex A (informative) Bibliography |
38 | Annex B (normative)Test procedure for the disconnecting test on internal fuses |