IEEE – PDF Standards Store ?u= Sat, 26 Oct 2024 19:42:35 +0000 en-US hourly 1 https://wordpress.org/?v=6.7.1 ?u=/wp-content/uploads/2024/11/cropped-icon-150x150.png IEEE – PDF Standards Store ?u= 32 32 IEEE C57.12.40-2017 ?u=/product/publishers/ieee/ieee-c57-12-40-2017-3/ Sun, 20 Oct 2024 10:41:12 +0000 IEEE Standard for Network, Three-Phase Transformers, 2500 kVA and Smaller; High Voltage, 34 500 V and Below; Low Voltage, 600 V and Below; Subway and Vault Types (Liquid Immersed)
Published By Publication Date Number of Pages
IEEE 2017
]]>
Revision Standard – Active. This standard is intended for use as a basis for establishing the performance, interchangeability, and safety of the equipment covered and to assist in the proper selection of such equipment.

PDF Catalog

PDF Pages PDF Title
1 IEEE Std C57.12.40-2017 Front Cover
2 Title page
4 Important Notices and Disclaimers Concerning IEEE Standards Documents
7 Participants
9 Introduction
10 Contents
11 1. Overview
1.1 Scope
1.2 Purpose
2. Normative references
12 3. Transformer performance requirements
3.1 Kilovolt-ampere ratings
13 3.2 Voltage rating and tap ratings
3.3 Angular displacement
14 3.4 Basic lightning impulse insulation levels (BILs)
3.5 Percent impedance
3.5.1 Tolerance for impedance on a tap
3.6 Audible sound levels
4. Tests
15 5. Construction
5.1 General
5.2 Corrosion resistance
5.2.1 Transformer enclosure
16 5.2.2 Hardware
5.2.3 Other materials
5.2.4 Finish
5.3 Tank
5.3.1 General
5.3.2 Transformer with sub-base
5.3.3 Covers
17 5.3.4 Lifting lugs
5.3.5 Lifting and jacking provisions
5.4 Cooling panels
5.5 Primary switch chamber
5.5.1 Primary switch chamber cover
5.5.1.1 Switch chamber fluid
5.5.2 Primary switch operating positions markings
5.5.3 Operating handle
18 5.5.4 Switch chamber
5.5.5 Primary switch accessory equipment
5.5.5.1 Filling provisions
5.5.5.2 Air test provision
5.5.5.3 Liquid-level indicator
5.5.5.4 Drain provisions
5.6 Secondary network protector throat
19 5.6.1 Secondary throat shipping guard
5.7 Accessory equipment for transformer tanks
5.7.1 Tap changer
5.7.2 Air test provision
5.7.3 Welded-on non-gasketed-type magnetic liquid-level indicator
5.7.4 Dial-type thermometer without alarm contacts
20 5.7.5 Combination drain and bottom filter valve
5.7.6 Filling plug and upper filter press connection
5.7.7 Ground pads
5.8 Dimensions
22 6. Primary disconnect and grounding switch
6.1 General
6.2 Network switch electrical performance requirements
6.2.1 Continuous rating
6.2.2 Short circuit rating
6.2.2.1 Short circuit thermal withstand
6.2.2.2 Peak withstand asymmetric current
23 6.2.2.3 Network switch short circuit test pass/fail criteria
6.2.2.4 Ground circuit short circuit test
6.2.2.5 Network switch closed position short circuit test
24 6.2.2.6 System short circuit peak value criteria
6.2.2.7 Network switch and chamber safety criteria
6.2.3 Interrupting rating
6.2.3.1 No interrupting rating (dead break)
6.2.3.2 Magnetizing current interrupting rating (mag-break)
6.2.4 Dielectric requirements in closed position
25 6.2.5 Dielectric requirements in open position
6.2.6 Electrical interlock
6.2.6.1 Interlock protection when no interrupting rating is required
6.2.6.2 Interlock protection when magnetizing current interruption is required
6.2.6.3 Interlock testing
6.2.6.4 Operating values
26 6.2.6.5 Interlock assembly
7. Bushings
7.1 Bushings and bushing wells
7.2 Primary bushings between main tank and switch chamber
7.3 Secondary bushings
7.3.1 Secondary flexible connectors
27 7.4 Terminal markings
8. Neutral termination
8.1 Primary neutral
8.2 Secondary neutral
28 9. Nameplate
10. Connections of transformer for shipment by manufacturer
34 Annex A (informative) Bibliography
35 Annex B (informative) Coordination of bushing selection and application
37 Back cover
]]>
IEEE P2811 ?u=/product/publishers/ieee/ieee-p2811/ Sun, 20 Oct 2024 10:41:12 +0000 IEEE Draft Standard for Architectural Framework and Technical Requirements for Smart Lock
Published By Publication Date Number of Pages
IEEE N/A 26
]]>
New IEEE Standard – Active – Draft. As an important part of smart home, smart lock will be used by every household in the future. Therefore, the standard specification of smart lock is particularly important. This draft standard introduces the concept of smart lock and defines the architecture of smart lock which consists of smart lock, smart lock master, smart lock visitor, cloud server and gateway. In addition, it introduces the interfaces between architectures, security, privacy and processing. Through the standardization of smart lock, it will actively promote the rapid development of smart lock in the industry.

]]>
IEEE C37.63-2013(Redline) ?u=/product/publishers/ieee/ieee-c37-63-2013-5/ Sun, 20 Oct 2024 10:41:11 +0000 IEEE Standard Requirements for Overhead, Pad-Mounted, Dry-Vault, and Submersible Automatic Line Sectionalizers for Alternating Current Systems Up to 38 kV (Redline)
Published By Publication Date Number of Pages
IEEE 2013
]]>
Revision Standard – Superseded. Required definitions, ratings, procedures for performing design tests and production tests, constructional requirements, and application considerations for overhead and padmounted, dry-vault, and submersible automatic line sectionalizers for ac systems are specified.

PDF Catalog

PDF Pages PDF Title
1 IEEE Std C37.63-2013 Front Cover
3 Title page
6 Notice to users
Laws and regulations
Copyrights
Updating of IEEE documents
Errata
Patents
8 Participants
10 Introduction
11 Contents
13 Important notice
1. Overview
1.1 Scope
1.2 Purpose
14 2. Normative references
15 3. Definitions
4. Normal (usual) and special (unusual) service conditions
4.1 Normal (usual) service conditions
16 4.2 Special (unusual) service conditions
5. Ratings
5.1 Rating information
17 5.2 Rated maximum voltage (V)
19 5.3 Rated insulation level
5.4 Rated power-frequency (fr)
5.5 Rated continuous (normal) current and temperature rise
5.6 Rated short-time withstand current (Ik)
5.7 Rated peak withstand current (Ip)
5.8 Rated duration of short-circuit (tk)
20 5.9 Rated supply voltage of closing and opening devices and of auxiliary and control circuits (Ua)
5.10 Rated supply frequency of closing and opening devices and of auxiliary circuits
5.11 Rated pressure of compressed gas supply for insulation and/or operation
5.12 Rated filling levels for insulation and/or operation.
5.101 Preferred minimum actuating current ratings (series coil sectionalizers)
5.102 Preferred fault-making current rating
21 5.103 Rated load-switching current
5.104 Rated unloaded transformer switching current
5.105 Preferred line charging and cable charging current ratings
6. Design and construction
6.1 Requirements for liquids in sectionalizers
22 6.2 Requirements for gases in sectionalizers
6.3 Grounding provisions
6.4 Auxiliary and control equipment
6.5 Dependent power operation
6.6 Stored energy operation
6.7 Independent manual operation
6.8 Operation of releases
6.9 Low- and high-pressure interlocking and monitoring devices
6.10 Nameplate markings
24 6.11 Interlocking devices
6.12 Position/charge indicators
6.13 X-ray emission
6.101 Counters
6.102 Instruction
25 6.103 Conductor terminal
6.104 Tank construction
6.105 Manual operating provision
26 7. Design (type) tests
7.1 General conditions for tests
29 7.2 Insulation (dielectric) tests
31 7.3 Radio influence voltage tests (RIV)
7.4 Measurement of the resistance of circuits
32 7.5 Temperature rise test
33 7.6 Short-time withstand current and peak withstand current tests
34 7.7 Verification of the degrees of protection provided by enclosures
7.8 Tightness tests
7.9 Electromagnetic compatibility tests
7.10 Additional tests on auxiliary and control circuits
7.11 X-radiation test procedure for vacuum interrupters
35 Switching tests
36 7.102 Fault-making tests
7.103 Condition of the sectionalizer after switching tests, short-time withstand current tests, and fault-making current tests
37 7.104 Mechanical operation tests
38 7.105 Partial discharge tests
39 7.106 Operating duty tests
41 7.107 Surge current test—series coil sectionalizers
42 7.108 Control electronic elements surge withstand capability tests
7.109 Minimum actuating current tests
7.110 Ice loading test
46 8. Production tests (routine tests)
8.1 General
8.2 Dielectric withstand test; one minute dry power-frequency
8.3 Tests on auxiliary and control circuits
8.4 Tightness tests
47 8.101 Operational calibration
8.102 Partial discharge test
8.103 Mechanical tests
48 Annex A (informative) X/R ratios
50 Annex B (normative) Ratings for series coil sectionalizers
52 Annex C (informative) Bibliography
]]>
IEEE C37.63-2013(Redline) ?u=/product/publishers/ieee/ieee-c37-63-2013-4/ Sun, 20 Oct 2024 10:41:11 +0000 IEEE Standard Requirements for Overhead, Pad-Mounted, Dry-Vault, and Submersible Automatic Line Sectionalizers for Alternating Current Systems Up to 38 kV (Redline)
Published By Publication Date Number of Pages
IEEE 2013 105
]]>
Revision Standard – Superseded. Required definitions, ratings, procedures for performing design tests and production tests, constructional requirements, and application considerations for overhead and padmounted, dry-vault, and submersible automatic line sectionalizers for ac systems are specified.

]]>
IEEE P2815 ?u=/product/publishers/ieee/ieee-p2815/ Sun, 20 Oct 2024 10:41:11 +0000 IEEE Draft Guide for the Technical Specification of Smart Distribution Transformer Terminal
Published By Publication Date Number of Pages
IEEE N/A
]]>
New IEEE Standard – Active – Draft.

]]>
IEEE 802.3ca-2020 ?u=/product/publishers/ieee/ieee-802-3ca-2020-8/ Sun, 20 Oct 2024 10:41:11 +0000 IEEE Standard for Ethernet Amendment 9: Physical Layer Specifications and Management Parameters for 25 Gb/s and 50 Gb/s Passive Optical Networks (Superseded)
Published By Publication Date Number of Pages
IEEE 2020
]]>
Amendment Standard – Superseded. This amendment to IEEE Std 802.3-2018 extends the operation of Ethernet passive optical networks (EPONs) to multiple channels of 25 Gb/s providing both symmetric and asymmetric operation for the following data rates downstream/upstream): 25/10 Gb/s, 25/25 Gb/s, 50/10 Gb/s, 50/25 Gb/s, and 50/50 Gb/s. This standard specifies the 25 Gb/s EPON Multi-Channel Reconciliation Sublayer (MCRS), Nx25G-EPON Physical Coding Sublayers (PCSs), Physical Media Attachment (PMA) sublayers, and Physical Medium Dependent (PMD) sublayers that support both symmetric and asymmetric data rates while maintaining backward compatibility with already deployed 10 Gb/s EPON equipment. Backward compatibility with deployed 1G-EPON and ITU-T G.984 GPON is maintained with 25GBASE-PQ for the specific case of 1G-EPON and GPON ONUs using reduced-band (40 nm) lasers. The EPON operation is defined for distances of at least 20 km, and for a split ratio of at least 1:32.

PDF Catalog

PDF Pages PDF Title
1 IEEE Std 802.3ca-2020 Front Cover
2 Title page
4 Important Notices and Disclaimers Concerning IEEE Standards Documents
7 Participants
10 Introduction
13 Contents
24 1. Introduction
1.3 Normative references
1.4 Definitions
26 1.5 Abbreviations
27 30. Management
30.3 Layer management for DTEs
30.3.2 PHY device managed object class
30.3.2.1 PHY device attributes
30.3.2.1.2 aPhyType
30.3.2.1.3 aPhyTypeList
28 30.3.5 MPCP managed object class
30.3.5.1 MPCP Attributes
30.3.5.1.2 aMPCPAdminState
30.3.5.1.3 aMPCPMode
30.3.5.1.4 aMPCPLinkID
30.5 Layer management for medium attachment units (MAUs)
30.5.1 MAU managed object class
30.5.1.1 MAU attributes
30.5.1.1.2 aMAUType
32 45. Management Data Input/Output (MDIO) Interface
45.2 MDIO Interface Registers
45.2.1 PMA/PMD registers
45.2.1.23a PMA/PMD control 3 register (Register 1.29)
45.2.1.23a.1 Downstream differential encoding (1.29.15)
45.2.1.23a.2 PMA/PMD type selection (1.29.5:0)
34 45.2.1.134a Nx25G-EPON PMA/PMD extended ability register (Registers 1.1000 through 1.1002)
36 45.2.1.134a.1 25GBASE-PQX-U3 (1.1000.15)
45.2.1.134a.2 25GBASE-PQX-U2 (1.1000.14)
45.2.1.134a.3 25GBASE-PQX-D3 (1.1000.13)
45.2.1.134a.4 25GBASE-PQX-D2 (1.1000.12)
45.2.1.134a.5 25GBASE-PQG-U3 (1.1000.11)
45.2.1.134a.6 25GBASE-PQG-U2 (1.1000.10)
37 45.2.1.134a.7 25GBASE-PQG-D3 (1.1000.9)
45.2.1.134a.8 25GBASE-PQG-D2 (1.1000.8)
45.2.1.134a.9 25/10GBASE-PQX-U3 (1.1000.7)
45.2.1.134a.10 25/10GBASE-PQX-U2 (1.1000.6)
45.2.1.134a.11 25/10GBASE-PQX-D3 (1.1000.5)
45.2.1.134a.12 25/10GBASE-PQX-D2 (1.1000.4)
45.2.1.134a.13 25/10GBASE-PQG-U3 (1.1000.3)
45.2.1.134a.14 25/10GBASE-PQG-U2 (1.1000.2)
45.2.1.134a.15 25/10GBASE-PQG-D3 (1.1000.1)
38 45.2.1.134a.16 25/10GBASE-PQG-D2 (1.1000.0)
45.2.1.134a.17 50/25GBASE-PQX-U3 (1.1001.15)
45.2.1.134a.18 50/25GBASE-PQX-U2 (1.1001.14)
45.2.1.134a.19 50/25GBASE-PQX-D3 (1.1001.13)
45.2.1.134a.20 50/25GBASE-PQX-D2 (1.1001.12)
45.2.1.134a.21 50/25GBASE-PQG-U3 (1.1001.11)
45.2.1.134a.22 50/25GBASE-PQG-U2 (1.1001.10)
45.2.1.134a.23 50/25GBASE-PQG-D3 (1.1001.9)
45.2.1.134a.24 50/25GBASE-PQG-D2 (1.1001.8)
39 45.2.1.134a.25 50/10GBASE-PQX-U3 (1.1001.7)
45.2.1.134a.26 50/10GBASE-PQX-U2 (1.1001.6)
45.2.1.134a.27 50/10GBASE-PQX-D3 (1.1001.5)
45.2.1.134a.28 50/10GBASE-PQX-D2 (1.1001.4)
45.2.1.134a.29 50/10GBASE-PQG-U3 (1.1001.3)
45.2.1.134a.30 50/10GBASE-PQG-U2 (1.1001.2)
45.2.1.134a.31 50/10GBASE-PQG-D3 (1.1001.1)
45.2.1.134a.32 50/10GBASE-PQG-D2 (1.1001.0)
45.2.1.134a.33 50GBASE-PQX-U3 (1.1002.7)
40 45.2.1.134a.34 50GBASE-PQX-U2 (1.1002.6)
45.2.1.134a.35 50GBASE-PQX-D3 (1.1002.5)
45.2.1.134a.36 50GBASE-PQX-D2 (1.1002.4)
45.2.1.134a.37 50GBASE-PQG-U3 (1.1002.3)
45.2.1.134a.38 50GBASE-PQG-U2 (1.1002.2)
45.2.1.134a.39 50GBASE-PQG-D3 (1.1002.1)
45.2.1.134a.40 50GBASE-PQG-D2 (1.1002.0)
41 45.2.3 PCS registers
45.2.3.1 PCS control 1 register (Register 3.0)
42 45.2.3.6 PCS control 2 register (Register 3.7)
45.2.3.6.1 PCS type selection (3.7.34:0)
45.2.3.8 PCS status 3 register (Register 3.9)
43 45.2.3.8.aa 25GBASE-PQ capable (3.9.7)
45.2.3.8.ab 25/10GBASE-PQ capable (3.9.6)
45.2.3.8.ac 25GBASE-PQ Rx only capable (3.9.5)
45.2.3.8.ad 25GBASE-PQ Tx only capable (3.9.4)
45.2.3.41 10/1GBASE-PRX and 10GBASE-PR10G-EPON and Nx25G-EPON corrected FEC codewords counter (Register 3.76, 3.77)
44 45.2.3.42 10/1GBASE-PRX and 10GBASE-PR10G-EPON and Nx25G-EPON uncorrected FEC codewords counter (Register 3.78, 3.79)
45.2.3.43 10GBASE-PR and, 10/1GBASE-PRX, and Nx25G-EPON BER monitor interval timer control register (Register 3.80)
45 45.2.3.44 10GBASE-PR and, 10/1GBASE-PRX, and Nx25G-EPON BER monitor status (Register 3.81)
45.2.3.44.1 10GBASE-PR and, 10/1GBASE-PRX, and Nx25G-EPON PCS high BER (3.81.0)
46 45.2.3.44.2 10GBASE-PR and, 10/1GBASE-PRX, and Nx25G-EPON PCS latched high BER (3.81.1)
45.2.3.45 10GBASE-PR and, 10/1GBASE-PRX, and Nx25G-EPON BER monitor threshold control (Register 3.82)
45.2.3.45a Nx25G-EPON synchronization pattern registers (Registers 3.83 through 3.134)
47 45.2.3.45a.1 SP3 bit 257 (3.83.5)
45.2.3.45a.2 SP3 balanced (3.83.4)
45.2.3.45a.3 SP2 bit 257 (3.83.3)
45.2.3.45a.4 SP2 balanced (3.83.2)
48 45.2.3.45a.5 SP1 bit 257 (3.83.1)
45.2.3.45a.6 SP1 balanced (3.83.0)
45.2.3.45a.7 SP1 pattern (3.84.0 through 3.99.15)
45.2.3.45a.8 SP1 length (3.100.15:0)
45.2.3.45a.9 SP2 pattern (3.101.0 through 3.116.15)
45.2.3.45a.10 SP2 length (3.117.15:0)
45.2.3.45a.11 SP3 pattern (3.118.0 through 3.133.15)
45.2.3.45a.12 SP3 length (3.134.15:0)
49 45.5 Protocol implementation conformance statement (PICS) proforma for Clause 45, Management Data Input/Output (MDIO) interface
45.5.1 Introduction
45.5.2 Identification
45.5.2.1 Implementation identification
45.5.2.2 Protocol summary
50 45.5.3 PICS proforma tables for the Management Data Input Output (MDIO) interface
45.5.3.3 PMA/PMD management functions
45.5.3.7 PCS management functions
51 56. Introduction to Ethernet for subscriber access networks
56.1 Overview
56.1.2 Summary of P2MP sublayers
53 56.1.2.1 Multipoint MAC Control Protocol (MPCP)
56.1.2.2 Reconciliation Sublayer (RS) and media independent interfaces
56.1.3 Physical Layer signaling systems
60 67. System considerations for Ethernet subscriber access networks
67.1 Overview
62 141. Physical Medium Dependent (PMD) sublayer and medium for Nx25G-EPON passive optical networks
141.1 Overview
141.1.1 Terminology
141.1.2 Positioning of the PMD sublayer within the IEEE 802.3 architecture
141.1.3 PHY link types
65 141.2 PMD nomenclature
141.2.1 Introduction
141.2.2 PMD rate classes
141.2.3 PMD coexistence classes
141.2.4 PMD transmission direction classes
141.2.5 PMD power classes
66 141.2.6 PMD naming
141.2.7 Supported combinations of OLT and ONU PMDs
67 141.2.7.1 PHY Links supporting medium power budget
68 141.2.7.2 PHY Links supporting high power budget
141.3 PMD functional specifications
141.3.1 PMD service interface
141.3.1.1 Channel-to-wavelength mapping
69 141.3.1.2 Delay constraints
141.3.1.3 PMD_UNITDATA[i].request
141.3.1.4 PMD_UNITDATA[i].indication
70 141.3.1.5 PMD_SIGNAL[i].request
141.3.1.6 PMD_SIGNAL[i].indication
141.3.2 PMD block diagram
71 141.3.3 PMD transmit function
141.3.4 PMD receive function
141.3.5 PMD signal detect function
141.3.5.1 ONU PMD signal detect
72 141.3.5.2 OLT PMD signal detect
141.3.5.3 Nx25G-EPON signal detect functions
141.4 Wavelength allocation
73 141.5 PMD to MDI optical specifications for OLT PMDs
141.5.1 Transmitter optical specifications
141.5.2 Receiver optical specifications
78 141.6 PMD to MDI optical specifications for ONU PMDs
141.6.1 Transmitter optical specifications
81 141.6.2 Receiver optical specifications
83 141.7 Definitions of optical parameters and measurement methods
141.7.1 Insertion loss
141.7.2 Test patterns
141.7.3 Wavelength and spectral width measurement
141.7.4 Optical power measurements
141.7.5 Extinction ratio measurements
141.7.6 Optical Modulation Amplitude (OMA) test procedure
141.7.7 Relative intensity noise optical modulation amplitude (RINxOMA) measuring procedure
84 141.7.8 Transmit optical waveform (transmit eye)
141.7.9 Transmitter and dispersion penalty (TDP) for 25G
141.7.9.1 Reference transmitter requirements
141.7.9.2 Channel requirements
141.7.9.3 Reference receiver requirements
141.7.9.4 Test procedure
85 141.7.10 Receive sensitivity
141.7.11 Stressed receiver conformance test
141.7.12 Jitter measurements
141.7.13 Laser on/off timing measurement
141.7.13.1 Definitions
141.7.13.2 Test specification
87 141.7.14 Receiver settling timing measurement
141.7.14.1 Definitions
141.7.14.2 Test specification
88 141.8 Environmental, safety, and labeling
141.8.1 General safety
141.8.2 Laser safety
141.8.3 Installation
141.8.4 Environment
141.8.5 PMD labeling
89 141.9 Characteristics of the fiber optic cabling
141.9.1 Fiber optic cabling model
141.9.2 Optical fiber and cable
141.9.3 Optical fiber connection
90 141.9.4 Medium Dependent Interface (MDI)
91 141.10 Protocol implementation conformance statement (PICS) proforma for Clause 141, Physical Medium Dependent (PMD) sublayer and medium for Nx25G-EPON passive optical networks
141.10.1 Introduction
141.10.2 Identification
141.10.2.1 Implementation identification
141.10.2.2 Protocol summary
92 141.10.3 Major capabilities/options
95 141.10.4 PICS proforma tables for Physical Medium Dependent (PMD) sublayer and medium for passive optical networks, type 25/10GBASE-PQ, 25GBASE-PQ, 50/10GBASE-PQ, 50/25GBASE-PQ, and 50GBASE-PQ
141.10.4.1 PMD functional specifications
96 141.10.4.2 PMD to MDI optical specifications for 25/10GBASE-PQG-D2
141.10.4.3 PMD to MDI optical specifications for 25/10GBASE-PQG-D3
141.10.4.4 PMD to MDI optical specifications for 25/10GBASE-PQX-D2
97 141.10.4.5 PMD to MDI optical specifications for 25/10GBASE-PQX-D3
141.10.4.6 PMD to MDI optical specifications for 25GBASE-PQG-D2
141.10.4.7 PMD to MDI optical specifications for 25GBASE-PQG-D3
141.10.4.8 PMD to MDI optical specifications for 25GBASE-PQX-D2
98 141.10.4.9 PMD to MDI optical specifications for 25GBASE-PQX-D3
141.10.4.10 PMD to MDI optical specifications for 50/10GBASE-PQG-D2
141.10.4.11 PMD to MDI optical specifications for 50/10GBASE-PQG-D3
141.10.4.12 PMD to MDI optical specifications for 50/10GBASE-PQX-D2
99 141.10.4.13 PMD to MDI optical specifications for 50/10GBASE-PQX-D3
141.10.4.14 PMD to MDI optical specifications for 50/25GBASE-PQG-D2
141.10.4.15 PMD to MDI optical specifications for 50/25GBASE-PQG-D3
141.10.4.16 PMD to MDI optical specifications for 50/25GBASE-PQX-D2
100 141.10.4.17 PMD to MDI optical specifications for 50/25GBASE-PQX-D3
141.10.4.18 PMD to MDI optical specifications for 50GBASE-PQG-D2
141.10.4.19 PMD to MDI optical specifications for 50GBASE-PQG-D3
141.10.4.20 PMD to MDI optical specifications for 50GBASE-PQX-D2
101 141.10.4.21 PMD to MDI optical specifications for 50GBASE-PQX-D3
141.10.4.22 PMD to MDI optical specifications for 25/10GBASE-PQG-U2
141.10.4.23 PMD to MDI optical specifications for 25/10GBASE-PQG-U3
141.10.4.24 PMD to MDI optical specifications for 25/10GBASE-PQX-U2
102 141.10.4.25 PMD to MDI optical specifications for 25/10GBASE-PQX-U3
141.10.4.26 PMD to MDI optical specifications for 25GBASE-PQG-U2
141.10.4.27 PMD to MDI optical specifications for 25GBASE-PQG-U3
141.10.4.28 PMD to MDI optical specifications for 25GBASE-PQX-U2
103 141.10.4.29 PMD to MDI optical specifications for 25GBASE-PQX-U3
141.10.4.30 PMD to MDI optical specifications for 50/10GBASE-PQG-U2
141.10.4.31 PMD to MDI optical specifications for 50/10GBASE-PQG-U3
141.10.4.32 PMD to MDI optical specifications for 50/10GBASE-PQX-U2
104 141.10.4.33 PMD to MDI optical specifications for 50/10GBASE-PQX-U3
141.10.4.34 PMD to MDI optical specifications for 50/25GBASE-PQG-U2
141.10.4.35 PMD to MDI optical specifications for 50/25GBASE-PQG-U3
141.10.4.36 PMD to MDI optical specifications for 50/25GBASE-PQX-U2
105 141.10.4.37 PMD to MDI optical specifications for 50/25GBASE-PQX-U3
141.10.4.38 PMD to MDI optical specifications for 50GBASE-PQG-U2
141.10.4.39 PMD to MDI optical specifications for 50GBASE-PQG-U3
141.10.4.40 PMD to MDI optical specifications for 50GBASE-PQX-U2
106 141.10.4.41 PMD to MDI optical specifications for 50GBASE-PQX-U3
141.10.4.42 Definitions of optical parameters and measurement methods
107 141.10.4.43 Characteristics of the fiber optic cabling and MDI
141.10.4.44 Environmental specifications
108 142. Physical Coding Sublayer and Physical Media Attachment for Nx25G-EPON
142.1 Overview
142.1.1 Conventions
142.1.1.1 State diagrams
142.1.1.2 Hexadecimal notation
111 142.1.1.3 Timers
142.1.1.4 Operations on variables
112 142.1.1.5 Operations on wrap-around variables
142.1.1.6 FIFO access operations
113 142.1.2 Delay constraints
142.1.3 Burst transmission
114 142.1.3.1 Default synchronization pattern parameters
115 142.2 PCS transmit data path
142.2.1 64B/66B line encoder
117 142.2.2 Scrambler
142.2.3 64B/66B to 256B/257B transcoder
142.2.4 FEC encoder
142.2.4.1 Low-density parity-check coding
120 142.2.4.2 FEC encoder processing
122 142.2.4.3 Interleaver
127 142.2.5 Transmit data path state diagrams
142.2.5.1 Constants
128 142.2.5.2 Variables
130 142.2.5.3 Functions
131 142.2.5.4 State diagrams
142.2.5.4.1 PCS Input process
132 142.2.5.4.2 PCS Framer process
133 142.2.5.4.3 PCS Transmit process
134 142.3 PCS receive data path
142.3.1 FEC decoder
142.3.1.1 Receive interleaving
135 142.3.2 256B/257B to 64B/66B transcoder
142.3.3 Descrambler
136 142.3.4 64B/66B decoder
137 142.3.5 Receive data path state diagrams
142.3.5.1 Constants
138 142.3.5.2 Variables
140 142.3.5.3 Functions
141 142.3.5.4 OLT Synchronizer process state diagram
142.3.5.5 ONU Synchronizer process state diagram
142 142.3.5.6 PCS ONU BER Monitor process
143 142.3.5.7 PCS Output process
142.4 Nx25G-EPON PMA
142.4.1 Service Interface
144 142.4.1.1 PMA_UNITDATA[i].request
142.4.1.1.1 Semantics of the service primitive
142.4.1.1.2 When generated
142.4.1.1.3 Effect of receipt
142.4.1.2 PMA_UNITDATA[i].indication
142.4.1.2.1 Semantics of the service primitive
142.4.1.2.2 When generated
142.4.1.2.3 Effect of receipt
145 142.4.1.3 PMA_SIGNAL[i].request
142.4.1.4 PMA_SIGNAL[i].indication
142.4.1.4.1 Semantics of the service primitive
142.4.1.4.2 When generated
142.4.1.4.3 Effect of receipt
142.4.2 Differential encoder
146 142.4.3 Differential decoder
142.4.4 PMA transmit clock
142.4.4.1 Loop-timing specifications for ONUs
142.4.5 TCDR measurement
142.4.5.1 Definitions
142.4.5.2 Test specification
148 142.5 Protocol implementation conformance statement (PICS) proforma for Clause 142, Physical Coding Sublayer and Physical Media Attachment for Nx25G-EPON
142.5.1 Introduction
142.5.2 Identification
142.5.2.1 Implementation identification
142.5.2.2 Protocol summary
149 142.5.3 PCS capabilities/options
142.5.4 PCS processes
150 142.5.5 PMA processes
151 143. Multi-Channel Reconciliation Sublayer
143.1 Overview
143.2 Summary of major concepts
152 143.2.1 Concept of a logical link and LLID
143.2.2 Concept of an MCRS channel
143.2.3 Binding of multiple MACs to multiple xMII instances
153 143.2.4 Transmission and reception over multiple MCRS channels
143.2.4.1 Transmission unit
143.2.4.2 Transmission envelopes
143.2.4.3 Envelope headers
154 143.2.4.4 Interpacket gap adjustment
155 143.2.5 Dynamic channel bonding
156 143.2.5.1 LLID transmission over multiple MCRS channels
157 143.2.5.2 MCRS channel skew remediation mechanism
143.2.5.3 EnvTx and EnvRx buffers
159 143.2.5.4 Envelope position alignment marker
143.2.6 MDIO addressing model for multi-channel architecture
161 143.3 MCRS functional specifications
143.3.1 MCRS interfaces
143.3.1.1 PLS service primitives
162 143.3.1.1.1 Mapping of PLS_DATA[ch].request primitive
143.3.1.1.2 Mapping of PLS_SIGNAL[ch].indication primitive
143.3.1.1.3 Mapping of PLS_DATA[ch].indication primitive
163 143.3.1.1.4 Mapping of PLS_DATA_VALID[ch].indication primitive
143.3.1.1.5 Mapping of PLS_CARRIER[ch].indication primitive
143.3.1.2 MCRS control primitives
143.3.1.2.1 MCRS_CTRL[ch].request(link_id, epam, env_length) primitive
143.3.1.2.2 MCRS_CTRL[ch].indication() primitive
143.3.1.2.3 MCRS_ECH[ch].indication(Llid) primitive
143.3.1.3 XGMII interfaces
143.3.1.4 25GMII interfaces
164 143.3.2 Envelope header format
165 143.3.2.1 CRC8 calculation test sequences
166 143.3.3 Transmit functional specifications
167 143.3.3.1 Conventions
143.3.3.2 Application-specific parameter definitions
143.3.3.3 Constants
168 143.3.3.4 Variables
170 143.3.3.5 Functions
172 143.3.3.6 State diagrams
143.3.3.6.1 Input process
143.3.3.6.2 Transmit process
174 143.3.4 Receive functional specifications
175 143.3.4.1 Conventions
143.3.4.2 Constants
176 143.3.4.3 Variables
177 143.3.4.4 Functions
178 143.3.4.5 State diagrams
143.3.4.5.1 Receive process
179 143.3.4.5.2 Output process
143.4 Nx25G-EPON MCRS requirements
143.4.1 Nx25G-EPON architecture
181 143.4.1.1 MCRS channels
143.4.1.2 Symmetric and asymmetric data rates
182 143.4.1.3 Nx25G-EPON application-specific parameters
143.4.1.3.1 Constants
143.4.1.3.2 Transmit variables
143.4.2 MCRS time synchronization
183 143.4.3 Delay variability constraints
143.4.4 Asymmetric rate operation
186 143.5 Protocol implementation conformance statement (PICS) proforma for Clause 143, Multi-Channel Reconciliation Sublayer
143.5.1 Introduction
143.5.2 Identification
143.5.2.1 Implementation identification
143.5.2.2 Protocol summary
187 143.5.3 Generic MCRS
143.5.4 MCRS in Nx25G-EPON
143.5.4.1 Major capabilities/option
188 143.5.4.2 MCRS implementation in Nx25G-EPON
189 144. Multipoint MAC Control for Nx25G-EPON
144.1 Overview
144.1.1 Principles of point-to-multipoint operation
144.1.1.1 Transmission arbitration
190 144.1.1.2 Concept of logical links
192 144.1.1.3 ONU discovery and registration
144.1.2 Position of Multipoint MAC Control (MPMC) within the IEEE 802.3 hierarchy
144.1.3 Functional block diagram
144.1.4 Service interfaces
144.1.4.1 MAC Control service (MCS) interface
195 144.1.4.2 MAC Control interconnect (MCI)
144.1.4.3 MAC service Interface
144.1.4.4 MCRS Control interface
144.1.5 Conventions
144.2 Protocol-independent operation
196 144.2.1 Control Parser and Control Multiplexer
144.2.1.1 Constants
144.2.1.2 Counters
144.2.1.3 Variables
197 144.2.1.4 Functions
198 144.2.1.5 Control Parser state diagram
199 144.2.1.6 Control Multiplexer state diagram
144.3 Multipoint Control Protocol (MPCP)
144.3.1 Principles of Multipoint Control Protocol (MPCP)
144.3.1.1 Ranging measurement and time synchronization
202 144.3.1.2 Granting access to the PON media by the OLT
203 144.3.2 MPCP block diagram
205 144.3.3 Delay variability requirements
144.3.4 Logical link identifier (LLID) types
144.3.4.1 Physical Layer ID (PLID)
206 144.3.4.2 Management link ID (MLID)
144.3.4.3 User link ID (ULID)
144.3.4.4 Group link ID (GLID)
144.3.5 Allocation of LLID values
207 144.3.6 MPCPDU structure and encoding
208 144.3.6.1 GATE description
210 144.3.6.2 REPORT description
212 144.3.6.3 REGISTER_REQ description
213 144.3.6.4 REGISTER description
215 144.3.6.5 REGISTER_ACK description
217 144.3.6.6 DISCOVERY description
219 144.3.6.7 SYNC_PATTERN description
221 144.3.7 Discovery process
223 144.3.7.1 Constants
224 144.3.7.2 Counters
144.3.7.3 Variables
226 144.3.7.4 Functions
227 144.3.7.5 Messages
144.3.7.6 Discovery Initiation state diagram
228 144.3.7.7 Registration Completion state diagram
229 144.3.7.8 ONU Registration state diagram
231 144.3.8 Granting process
144.3.8.1 Constants
232 144.3.8.2 Counters
144.3.8.3 Variables
233 144.3.8.4 Functions
144.3.8.5 Timers
144.3.8.6 Messages
144.3.8.7 GATE Generation state diagram
234 144.3.8.8 GATE Reception state diagram
144.3.8.9 OLT Envelope Commitment state diagram
235 144.3.8.10 ONU Envelope Commitment state diagram
236 144.3.8.11 Envelope Activation state diagram
144.3.9 Discovery process in dual-rate systems
144.3.9.1 OLT rate-specific discovery
237 144.3.9.2 ONU rate-specific registration
238 144.4 Channel Control Protocol (CCP)
144.4.1 CCP block diagram
239 144.4.2 Principles of Channel Control Protocol
240 144.4.2.1 Disabling a downstream channel at an ONU
144.4.2.2 Enabling a downstream channel at an ONU
144.4.2.3 Disabling an upstream channel at an ONU
241 144.4.2.4 Enabling an upstream channel at an ONU
144.4.2.5 Local channel state changes at an ONU
144.4.3 CCPDU structure and encoding
242 144.4.3.1 CC_REQUEST description
244 144.4.3.2 CC_RESPONSE description
245 144.4.4 Channel Control operation
144.4.4.1 Constants
246 144.4.4.2 Variables
247 144.4.4.3 Functions
248 144.4.4.4 Messages
144.4.4.5 OLT CCPDU processing state diagram
249 144.4.4.6 ONU CCPDU processing state diagram
250 144.5 Protocol implementation conformance statement (PICS) proforma for Clause 144, Multipoint MAC Control for Nx25G-EPON
144.5.1 Introduction
144.5.2 Identification
144.5.2.1 Implementation identification
144.5.2.2 Protocol summary
251 144.5.3 Major capabilities/options
144.5.4 PICS proforma tables for Multipoint MAC Control
144.5.4.1 Clock tracking
144.5.4.2 LLID
252 144.5.4.3 Protocol-independent state diagrams
144.5.4.4 MPCP
255 144.5.4.5 CCP
256 Annex A (informative) Bibliography
257 Annex 31A (normative) MAC Control opcode assignments
259 Annex 142A (informative) Encoding example for QC-LDPC(16952,14392) FEC and interleaving
142A.1 Example of initial control seed sequence
142A.2 QC-LDPC FEC encoder test vectors
267 Back Cover
]]>
IEEE C37.63-2013 ?u=/product/publishers/ieee/ieee-c37-63-2013-3/ Sun, 20 Oct 2024 10:41:11 +0000 IEEE Standard Requirements for Overhead, Pad-Mounted, Dry-Vault, and Submersible Automatic Line Sectionalizers for Alternating Current Systems Up to 38 kV
Published By Publication Date Number of Pages
IEEE 2013
]]>
Revision Standard – Active. Required definitions, ratings, procedures for performing design tests and production tests, constructional requirements, and application considerations for overhead and padmounted, dry-vault, and submersible automatic line sectionalizers for ac systems are specified.

PDF Catalog

PDF Pages PDF Title
1 IEEE Std C37.63-2013 Front Cover
3 Title page
6 Notice to users
Laws and regulations
Copyrights
Updating of IEEE documents
Errata
Patents
8 Participants
10 Introduction
11 Contents
13 Important notice
1. Overview
1.1 Scope
1.2 Purpose
14 2. Normative references
15 3. Definitions
4. Normal (usual) and special (unusual) service conditions
4.1 Normal (usual) service conditions
16 4.2 Special (unusual) service conditions
5. Ratings
5.1 Rating information
17 5.2 Rated maximum voltage (V)
19 5.3 Rated insulation level
5.4 Rated power-frequency (fr)
5.5 Rated continuous (normal) current and temperature rise
5.6 Rated short-time withstand current (Ik)
5.7 Rated peak withstand current (Ip)
5.8 Rated duration of short-circuit (tk)
20 5.9 Rated supply voltage of closing and opening devices and of auxiliary and control circuits (Ua)
5.10 Rated supply frequency of closing and opening devices and of auxiliary circuits
5.11 Rated pressure of compressed gas supply for insulation and/or operation
5.12 Rated filling levels for insulation and/or operation.
5.101 Preferred minimum actuating current ratings (series coil sectionalizers)
5.102 Preferred fault-making current rating
21 5.103 Rated load-switching current
5.104 Rated unloaded transformer switching current
5.105 Preferred line charging and cable charging current ratings
6. Design and construction
6.1 Requirements for liquids in sectionalizers
22 6.2 Requirements for gases in sectionalizers
6.3 Grounding provisions
6.4 Auxiliary and control equipment
6.5 Dependent power operation
6.6 Stored energy operation
6.7 Independent manual operation
6.8 Operation of releases
6.9 Low- and high-pressure interlocking and monitoring devices
6.10 Nameplate markings
24 6.11 Interlocking devices
6.12 Position/charge indicators
6.13 X-ray emission
6.101 Counters
6.102 Instruction
25 6.103 Conductor terminal
6.104 Tank construction
6.105 Manual operating provision
26 7. Design (type) tests
7.1 General conditions for tests
29 7.2 Insulation (dielectric) tests
31 7.3 Radio influence voltage tests (RIV)
7.4 Measurement of the resistance of circuits
32 7.5 Temperature rise test
33 7.6 Short-time withstand current and peak withstand current tests
34 7.7 Verification of the degrees of protection provided by enclosures
7.8 Tightness tests
7.9 Electromagnetic compatibility tests
7.10 Additional tests on auxiliary and control circuits
7.11 X-radiation test procedure for vacuum interrupters
35 Switching tests
36 7.102 Fault-making tests
7.103 Condition of the sectionalizer after switching tests, short-time withstand current tests, and fault-making current tests
37 7.104 Mechanical operation tests
38 7.105 Partial discharge tests
39 7.106 Operating duty tests
41 7.107 Surge current test—series coil sectionalizers
42 7.108 Control electronic elements surge withstand capability tests
7.109 Minimum actuating current tests
7.110 Ice loading test
46 8. Production tests (routine tests)
8.1 General
8.2 Dielectric withstand test; one minute dry power-frequency
8.3 Tests on auxiliary and control circuits
8.4 Tightness tests
47 8.101 Operational calibration
8.102 Partial discharge test
8.103 Mechanical tests
48 Annex A (informative) X/R ratios
50 Annex B (normative) Ratings for series coil sectionalizers
52 Annex C (informative) Bibliography
]]>
IEEE P2893-2023/Cor 1 ?u=/product/publishers/ieee/ieee-p2893-2023-cor-1-5/ Sun, 20 Oct 2024 10:41:10 +0000 IEEE Draft Standard for Flexible Optical Service Unit (OSUFlex) of Optical Transport Network (OTN) in Power Systems - Corrigendum 1 Technical correction
Published By Publication Date Number of Pages
IEEE N/A
]]>
Corrigendum Standard – Active – Draft. Corrections to IEEE Std 2893-2023 are provided in this corrigendum

]]>
IEEE 3168-2024 ?u=/product/publishers/ieee/ieee-3168-2024-5/ Sun, 20 Oct 2024 10:41:08 +0000 IEEE Standard for Robustness Evaluation Test Methods for a Natural Language Processing Service That Uses Machine Learning (Approved Draft)
Published By Publication Date Number of Pages
IEEE 2024
]]>
New IEEE Standard – Active. The natural language processing (NLP) services using machine learning have rich applications in solving various tasks and have been widely deployed and used, usually accessible by application programming interface (API) calls. The robustness of the NLP services is challenged by various well-known general corruptions and adversarial attacks. Inadvertent or random deletion, addition, or repetition of characters or words are examples of general corruptions. Adversarial characters, words, or sentence samples are generated by adversarial attacks, causing the models underpinning the NLP services to produce incorrect results. A method for quantitatively evaluating the robustness the NLP services is proposed by this standard. Under the method, different cases the evaluation needs to perform against are specified. Robustness metrics and their calculation are defined. With the standard, understanding of the robustness of the services can be developed by the service stakeholders including the service developer, service providers, and service users. The evaluation can be performed during various phases in the life cycle of the NLP services, the testing phase, in the validation phase, after deployment, and so forth.

]]>
IEEE P2893-2023/Cor 1 ?u=/product/publishers/ieee/ieee-p2893-2023-cor-1-4/ Sun, 20 Oct 2024 10:41:07 +0000 IEEE Draft Standard for Flexible Optical Service Unit (OSUFlex) of Optical Transport Network (OTN) in Power Systems - Corrigendum 1 Technical correction
Published By Publication Date Number of Pages
IEEE N/A
]]>
Corrigendum Standard – Active – Draft. Corrections to IEEE Std 2893-2023 are provided in this corrigendum

]]>