{"id":140904,"date":"2024-10-19T08:11:06","date_gmt":"2024-10-19T08:11:06","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/asme-om-2015\/"},"modified":"2024-10-25T00:23:53","modified_gmt":"2024-10-25T00:23:53","slug":"asme-om-2015","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/asme\/asme-om-2015\/","title":{"rendered":"ASME OM 2015"},"content":{"rendered":"

Establishes the requirements for preservice and inservice testing and examination of certain components to assess their operational readiness in light-water reactor power plants. It identifies the components subject to test or examination, responsibilities, methods, intervals, parameters to be measured and evaluated, criteria for evaluating the results, corrective action, personnel qualification, and record keeping. These requirements apply to: (a) pumps and valves that are required to perform a specific function in shutting down a reactor to the safe shutdown condition, in maintaining the safe shutdown condition, or in mitigating the consequences of an accident; (b) pressure relief devices that protect systems or portions of systems that perform one or more of these three functions; and (c) dynamic restraints (snubbers) used in systems that perform one or more of these three functions.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
4<\/td>\nCONTENTS <\/td>\n<\/tr>\n
5<\/td>\nFOREWORD <\/td>\n<\/tr>\n
6<\/td>\nPREPARATION OF TECHNICAL INQUIRIES TO THE COMMITTEE ON OPERATION AND MAINTENANCE OF NUCLEAR POWER PLANTS <\/td>\n<\/tr>\n
8<\/td>\nCOMMITTEE ON OPERATION AND MAINTENANCE OF NUCLEAR POWER PLANTS <\/td>\n<\/tr>\n
10<\/td>\nPREFACE <\/td>\n<\/tr>\n
12<\/td>\nSUMMARY OF CHANGES <\/td>\n<\/tr>\n
16<\/td>\nDIVISION 1: OM CODE: SECTION IST CONTENTS <\/td>\n<\/tr>\n
21<\/td>\nSubsection ISTA General Requirements
ISTA-1000 INTRODUCTION
ISTA-1100 Scope
ISTA-1200 Jurisdiction
ISTA-1300 Application
ISTA-1400 Referenced Standards and Specifications
ISTA-1500 Owner’s Responsibilities
ISTA-1600 Accessibility <\/td>\n<\/tr>\n
22<\/td>\nISTA-2000 DEFINITIONS
Table ISTA-1400-1 Referenced Standards and Specifications <\/td>\n<\/tr>\n
23<\/td>\nISTA-3000 GENERAL REQUIREMENTS
ISTA-3100 Test and Examination Program
ISTA-3200 Administrative Requirements <\/td>\n<\/tr>\n
24<\/td>\nISTA-3300 Corrective Actions
ISTA-4000 INSTRUMENTATION AND TEST EQUIPMENT
ISTA-4100 Range and Accuracy
ISTA-4200 Calibration
ISTA-9000 RECORDS AND REPORTS
ISTA-9100 Scope
ISTA-9200 Requirements <\/td>\n<\/tr>\n
25<\/td>\nISTA-9300 Retention <\/td>\n<\/tr>\n
26<\/td>\nSubsection ISTB Inservice Testing of Pumps in Light-Water Reactor Nuclear Power Plants \u2014 Pre-2000 Plants
ISTB-1000 INTRODUCTION
ISTB-1100 Applicability
ISTB-1200 Exclusions
ISTB-1300 Pump Categories
ISTB-1400 Owner’s Responsibility
ISTB-2000 SUPPLEMENTAL DEFINITIONS
ISTB-3000 GENERAL TESTING REQUIREMENTS
ISTB-3100 Preservice Testing <\/td>\n<\/tr>\n
27<\/td>\nISTB-3200 Inservice Testing
ISTB-3300 Reference Values
Table ISTB-3000-1 Inservice Test Parameters <\/td>\n<\/tr>\n
28<\/td>\nISTB-3400 Frequency of Inservice Tests
ISTB-3500 Data Collection
Table ISTB-3400-1 Inservice Test Frequency
Table ISTB-3510-1 Required Instrument Accuracy <\/td>\n<\/tr>\n
29<\/td>\nISTB-5000 SPECIFIC TESTING REQUIREMENTS
ISTB-5100 Centrifugal Pumps (Except Vertical Line Shaft Centrifugal Pumps) <\/td>\n<\/tr>\n
30<\/td>\nTable ISTB-5121-1 Centrifugal Pump Test Acceptance Criteria <\/td>\n<\/tr>\n
31<\/td>\nISTB-5200 Vertical Line Shaft Centrifugal Pumps <\/td>\n<\/tr>\n
32<\/td>\nTable ISTB-5221-1 Vertical Line Shaft Centrifugal Pump Test Acceptance Criteria <\/td>\n<\/tr>\n
33<\/td>\nISTB-5300 Positive Displacement Pumps
Fig. ISTB-5223-1 Vibration Limits <\/td>\n<\/tr>\n
34<\/td>\nTable ISTB-5321-1 Positive Displacement Pump (Except Reciprocating) Test Acceptance Criteria <\/td>\n<\/tr>\n
35<\/td>\nISTB-6000 MONITORING, ANALYSIS, AND EVALUATION
ISTB-6100 Trending
ISTB-6200 Corrective Action
Table ISTB-5321-2 Reciprocating Positive Displacement Pump Test Acceptance Criteria <\/td>\n<\/tr>\n
36<\/td>\nISTB-6300 Systematic Error
ISTB-6400 Analysis of Related Conditions
ISTB-9000 RECORDS AND REPORTS
ISTB-9100 Pump Records
ISTB-9200 Test Plans
ISTB-9300 Record of Tests
ISTB-9400 Record of Corrective Action <\/td>\n<\/tr>\n
37<\/td>\nSubsection ISTC Inservice Testing of Valves in Light-Water Reactor Nuclear Power Plants
ISTC-1000 INTRODUCTION
ISTC-1100 Applicability
ISTC-1200 Exemptions
ISTC-1300 Valve Categories
ISTC-1400 Owner’s Responsibility
ISTC-2000 SUPPLEMENTAL DEFINITIONS <\/td>\n<\/tr>\n
38<\/td>\nISTC-3000 GENERAL TESTING REQUIREMENTS
ISTC-3100 Preservice Testing
ISTC-3200 Inservice Testing
ISTC-3300 Reference Values
ISTC-3500 Valve Testing Requirements <\/td>\n<\/tr>\n
39<\/td>\nTable ISTC-3500-1 Inservice Test Requirements <\/td>\n<\/tr>\n
40<\/td>\nISTC-3600 Leak Testing Requirements <\/td>\n<\/tr>\n
41<\/td>\nISTC-3700 Position Verification Testing
ISTC-3800 Instrumentation
ISTC-5000 SPECIFIC TESTING REQUIREMENTS
ISTC-5100 Power-Operated Valves ( POVs) <\/td>\n<\/tr>\n
44<\/td>\nISTC-5200 Other Valves <\/td>\n<\/tr>\n
46<\/td>\nISTC-6000 MONITORING, ANALYSIS, AND EVALUATION
ISTC-9000 RECORDS AND REPORTS
ISTC-9100 Records
ISTC-9200 Test Plans <\/td>\n<\/tr>\n
48<\/td>\nSubsection ISTD Preservice and Inservice Examination and Testing of Dynamic Restraints (Snubbers) in Light-Water Reactor Nuclear Power Plants
ISTD-1000 INTRODUCTION
ISTD-1100 Applicability
ISTD-1400 Owner’s Responsibility
ISTD-1500 Snubber Maintenance or Repair
ISTD-1600 Snubber Modification and Replacement
ISTD-1700 Deletions of Unacceptable Snubbers <\/td>\n<\/tr>\n
49<\/td>\nISTD-1800 Supported Component(s) or System Evaluation
ISTD-2000 DEFINITIONS
ISTD-3000 GENERAL REQUIREMENTS
ISTD-3100 General Examination Requirements <\/td>\n<\/tr>\n
50<\/td>\nISTD-3200 General Testing Requirements
ISTD-3300 General Service-Life Monitoring Requirements
ISTD-4000 SPECIFIC EXAMINATION REQUIREMENTS
ISTD-4100 Preservice Examination <\/td>\n<\/tr>\n
51<\/td>\nISTD-4200 Inservice Examination <\/td>\n<\/tr>\n
52<\/td>\nISTD-5000 SPECIFIC TESTING REQUIREMENTS
ISTD-5100 Preservice Operational Readiness Testing
Table ISTD-4252-1 Visual Examination Table <\/td>\n<\/tr>\n
53<\/td>\nISTD-5200 Inservice Operational Readiness Testing <\/td>\n<\/tr>\n
54<\/td>\nISTD-5300 The 10% Testing Sample <\/td>\n<\/tr>\n
55<\/td>\nISTD-5400 The 37 Testing Sample Plan <\/td>\n<\/tr>\n
56<\/td>\nISTD-5500 Retests of Previously Unacceptable Snubbers
ISTD-6000 SERVICE LIFE MONITORING
ISTD-6100 Predicted Service Life
ISTD-6200 Service Life Evaluation
Fig. ISTD-5431-1 The 37 Testing Sample Plan <\/td>\n<\/tr>\n
57<\/td>\nISTD-6300 Cause Determination
ISTD-6400 Additional Monitoring Requirements for Snubbers That Are Tested Without Applying a Load to the Snubber Piston Rod
ISTD-6500 Testing for Service Life Monitoring Purposes
ISTD-9000 RECORDS AND REPORTS
ISTD-9100 Snubber Records
ISTD-9200 Test Plans
ISTD-9300 Record of Tests
ISTD-9400 Record of Corrective Action <\/td>\n<\/tr>\n
58<\/td>\nSubsection ISTE Risk-Informed Inservice Testing of Components in Light-Water Reactor Nuclear Power Plants
ISTE-1000 INTRODUCTION
ISTE-1100 Applicability
ISTE-1200 Alternative
ISTE-1300 General
ISTE-2000 SUPPLEMENTAL DEFINITIONS <\/td>\n<\/tr>\n
59<\/td>\nISTE-3000 GENERAL REQUIREMENTS
ISTE-3100 Implementation
ISTE-3200 Probabilistic Risk Assessment
ISTE-3300 Integrated Decision Making <\/td>\n<\/tr>\n
60<\/td>\nISTE- 3400 Evaluation of Aggregate Risk
ISTE- 3500 Feedback and Corrective Actions
ISTE-4000 SPECIFIC COMPONENT CATEGORIZATION REQUIREMENTS
ISTE-4100 Component Risk Categorization <\/td>\n<\/tr>\n
61<\/td>\nISTE-4200 Component Safety Categorization <\/td>\n<\/tr>\n
62<\/td>\nISTE-4300 Testing Strategy Formulation
ISTE-4400 Evaluation of Aggregate Risk <\/td>\n<\/tr>\n
63<\/td>\nISTE-4500 Inservice Testing Program
ISTE-5000 SPECIFIC TESTING REQUIREMENTS
ISTE-5100 Pumps
Table ISTE-5121-1 LSSC Pump Testing <\/td>\n<\/tr>\n
64<\/td>\nISTE-5200 Check Valves
ISTE-5300 Motor-Operated Valve Assemblies
ISTE-5400 Pneumatically Operated Valves <\/td>\n<\/tr>\n
65<\/td>\nISTE-6000 MONITORING, ANALYSIS, AND EVALUATION
ISTE-6100 Performance Monitoring
ISTE-6200 Feedback and Corrective Actions
ISTE-9000 RECORDS AND REPORTS
ISTE-9100 Plant Expert Panel Records
ISTE-9200 Component Records <\/td>\n<\/tr>\n
66<\/td>\nSubsection ISTF Inservice Testing of Pumps in Light-Water Reactor Nuclear Power Plants \u2014 Post- 2000 Plants
ISTF-1000 INTRODUCTION
ISTF-1100 Applicability
ISTF-1200 Exclusions
ISTF-1300 Owner’s Responsibility
ISTF-2000 SUPPLEMENTAL DEFINITIONS
ISTF-3000 GENERAL TESTING REQUIREMENTS
ISTF-3100 Preservice Testing
ISTF-3200 Inservice Testing
ISTF-3300 Reference Values <\/td>\n<\/tr>\n
67<\/td>\nISTF-3400 Frequency of Inservice Tests
ISTF-3500 Data Collection
Table ISTF-3000-1 Inservice Test Parameters <\/td>\n<\/tr>\n
68<\/td>\nISTF-5000 SPECIFIC TESTING REQUIREMENTS
ISTF-5100 Centrifugal Pumps (Except Vertical Line Shaft Centrifugal Pumps)
Table ISTF-3510-1 Required Instrument Accuracy <\/td>\n<\/tr>\n
69<\/td>\nISTF-5200 Vertical Line Shaft Centrifugal Pumps
Table ISTF-5120-1 Centrifugal Pump Test Acceptance Criteria <\/td>\n<\/tr>\n
70<\/td>\nISTF-5300 Positive Displacement Pumps
Table ISTF-5220-1 Vertical Line Shaft and Centrifugal Pump Test Acceptance Criteria <\/td>\n<\/tr>\n
71<\/td>\nISTF-6000 MONITORING, ANALYSIS, AND EVALUATION
ISTF-6100 Trending
ISTF-6200 Corrective Action
ISTF-6300 Systematic Error
Table ISTF-5320-1 Positive Displacement Pump (Except Reciprocating) Test Acceptance Criteria
Table ISTF-5320-2 Reciprocating Positive Displacement Pump Test Acceptance Criteria <\/td>\n<\/tr>\n
72<\/td>\nISTF-6400 Analysis of Related Conditions
ISTF-9000 RECORDS AND REPORTS
ISTF-9100 Pump Records
ISTF-9200 Test Plans
ISTF-9300 Record of Tests
ISTF-9400 Record of Corrective Action <\/td>\n<\/tr>\n
74<\/td>\nDivision 1, Mandatory Appendix I Inservice Testing of Pressure Relief Devices in Light-Water Reactor Nuclear Power Plants
I-1000 GENERAL REQUIREMENTS
I-1100 Applicability
I-1200 Definitions
I-1300 Guiding Principles <\/td>\n<\/tr>\n
76<\/td>\nI-1400 Instrumentation
I-2000 INTRODUCTION
I-3000 PRESSURE RELIEF DEVICE TESTING
I-3100 Testing Before Initial Installation <\/td>\n<\/tr>\n
77<\/td>\nI-3200 Testing Before Initial Electric Power Generation
I-3300 Periodic Testing <\/td>\n<\/tr>\n
78<\/td>\nI-3400 Disposition After Testing or Maintenance <\/td>\n<\/tr>\n
80<\/td>\nI-4000 TEST METHODS
I-4100 Set-Pressure Testing <\/td>\n<\/tr>\n
82<\/td>\nI-4200 Seat Tightness Testing
I-4300 Alternative Test Media
I-5000 RECORDS AND RECORD KEEPING
I-5100 Requirements
I-5200 Record of Test
I-5300 Record of Modification and Corrective Action <\/td>\n<\/tr>\n
83<\/td>\nTable I-4220-1 Seat Tightness Testing Methods for Pressure Relief Devices <\/td>\n<\/tr>\n
84<\/td>\nDivision 1, Mandatory Appendix II Check Valve Condition Monitoring Program
II-1000 PURPOSE
II-2000 GROUPINGS
II-3000 ANALYSIS
II-4000 CONDITION-MONITORING ACTIVITIES <\/td>\n<\/tr>\n
85<\/td>\nII-5000 CORRECTIVE MAINTENANCE
II-6000 DOCUMENTATION
Table II-4000-1 Maximum Intervals <\/td>\n<\/tr>\n
86<\/td>\nDivision 1, Mandatory Appendix III Preservice and Inservice Testing of Active Electric Motor-Operated Valve Assemblies in Light-Water Reactor Power Plants
III-1000 INTRODUCTION
III-1100 Applicability
III-1200 Scope
III-2000 SUPPLEMENTAL DEFINITIONS
III-3000 GENERAL TESTING REQUIREMENTS
III-3100 Design Basis Verification Test
III-3200 Preservice Test <\/td>\n<\/tr>\n
87<\/td>\nIII-3300 Inservice Test
III-3400 Effect of MOV Replacement, Repair, or Maintenance
III-3500 Grouping of MOVs for Inservice Testing
III-3600 MOV Exercising Requirements
III-3700 Risk-Informed MOV Inservice Testing <\/td>\n<\/tr>\n
88<\/td>\nIII-5000 TEST METHODS
III-5100 Test Prerequisites
III-5200 Test Conditions
III-5300 Limits and Precautions
III-5400 Test Documents
III-5500 Test Parameters
III-6000 ANALYSIS AND EVALUATION OF DATA
III-6100 Acceptance Criteria <\/td>\n<\/tr>\n
89<\/td>\nIII-6200 Analysis of Data
III-6300 Evaluation of Data
III-6400 Determination of MOV Functional Margin
III-6500 Corrective Action <\/td>\n<\/tr>\n
90<\/td>\nIII-9000 RECORDS AND REPORTS
III-9100 Test Information
III-9200 Documentation of Analysis and Evaluation of Data <\/td>\n<\/tr>\n
92<\/td>\nDivision 1, Mandatory Appendix V Pump Periodic Verification Test Program
V-1000 PURPOSE
V-2000 DEFINITIONS
V-3000 GENERAL REQUIREMENTS <\/td>\n<\/tr>\n
93<\/td>\nDivision 1, Nonmandatory Appendix A Preparation of Test Plans
A-1000 PURPOSE
A-2000 TEST PLAN CONTENTS
A-2100 Background and Introduction
A-2200 Summary of Changes in Updated Test Plans
A-2300 Applicable Documents
A-2400 Code Subsections
A-2500 Detailed Contents
A-3000 SUBSTITUTE TESTS AND EXAMINATIONS
A-3100 General <\/td>\n<\/tr>\n
94<\/td>\nA-3200 Justification of Substitute Tests and Examinations <\/td>\n<\/tr>\n
95<\/td>\nDivision 1, Supplement to Nonmandatory Appendix A
AS-1000 SUPPLEMENT 1: INFORMATION FOR ISTB PUMP TEST TABLES
AS-2000 SUPPLEMENT 2: INFORMATION FOR ISTC VALVE TEST TABLES
AS-3000 SUPPLEMENT 3: INFORMATION FOR ISTD DYNAMIC RESTRAINT (SNUBBER) TABLES <\/td>\n<\/tr>\n
96<\/td>\nDivision 1, Nonmandatory Appendix B Dynamic Restraint Examination Checklist Items
B-1000 PURPOSE
B-2000 EXAMPLES FOR PRESERVICE AND INSERVICE
B-3000 EXAMPLES FOR PRESERVICE ONLY <\/td>\n<\/tr>\n
97<\/td>\nDivision 1, Nonmandatory Appendix C Dynamic Restraint Design and Operating Information
C-1000 PURPOSE
C-2000 DESIGN AND OPERATING ITEMS <\/td>\n<\/tr>\n
98<\/td>\nDivision 1, Nonmandatory Appendix D Comparison of Sampling Plans for Inservice Testing of Dynamic Restraints
D-1000 PURPOSE
D-2000 DESCRIPTION OF THE SAMPLING PLANS
D-2100 The 37 Plan
D-2200 The 10% Plan
D-3000 COMPARISON OF SAMPLING PLANS
D-3100 Up to 370 Snubbers
D-3200 Above 370 Snubbers <\/td>\n<\/tr>\n
99<\/td>\nDivision 1, Nonmandatory Appendix E Flowcharts for 10% and 37 Snubber Testing Plans
E-1000 PURPOSE <\/td>\n<\/tr>\n
100<\/td>\nFig. E-1000-1 Flowchart for 10% Snubber Testing Plan (ISTD- 5300) <\/td>\n<\/tr>\n
101<\/td>\nFig. E-1000-2 Flowchart for 37 Snubber Testing Plan (ISTD- 5400) <\/td>\n<\/tr>\n
102<\/td>\nDivision 1, Nonmandatory Appendix F Dynamic Restraints (Snubbers) Service Life Monitoring Methods
F-1000 PURPOSE
F-2000 PREDICTED SERVICE LIFE
F-2100 Manufacturer Recommendations
F-2200 Design Review
F-3000 SERVICE LIFE REEVALUATION
F-3100 Knowledge of the Operating Environment
F-3200 Knowledge of Operating Environment Effects <\/td>\n<\/tr>\n
103<\/td>\nF-3300 Cause Evaluation of Degraded or Failed Snubbers
F-4000 SHORTENED SERVICE LIFE
F-5000 SERVICE LIFE EXTENSION
F-6000 SEPARATE SERVICE LIFE POPULATIONS <\/td>\n<\/tr>\n
104<\/td>\nDivision 1, Nonmandatory Appendix G Application of Table ISTD-4252-1, Snubber Visual Examination
G-1000 PURPOSE
G-2000 ASSUMPTIONS
G-3000 CASE 1: EXAMINE ACCESSIBLE AND INACCESSIBLE SNUBBERS JOINTLY
G-3100 Application of Column A
G-3200 Application of Column B
G-3300 Application of Less Than or Equal to Column C and Recovery
G-3400 Application of Table When Number Exceeds Column C <\/td>\n<\/tr>\n
105<\/td>\nG-4000 CASE 2: EXAMINE ACCESSIBLE AND INACCESSIBLE SNUBBERS SEPARATELY
G-4100 Determine the Values From Columns A Through C
G-4200 Determine Subsequent Interval Separately
G-4300 Recombining Categories Into One Population <\/td>\n<\/tr>\n
106<\/td>\nDivision 1, Nonmandatory Appendix H Test Parameters and Methods
H-1000 PURPOSE
H-2000 TEST VARIABLES
H-3000 TEST PARAMETER MEASUREMENT
H-3100 Drag Force Measurement
H-3200 Activation Measurement
H-3300 Release Rate Measurement
H-4000 GENERAL TESTING CONSIDERATIONS <\/td>\n<\/tr>\n
107<\/td>\nH-4100 Drag Test Velocity
H-4200 Test Force
H-4300 Velocity Ramp Rate
H-4400 Data Recording
H-4500 Verification of Test Results <\/td>\n<\/tr>\n
108<\/td>\nDivision 1, Nonmandatory Appendix J Check Valve Testing Following Valve Reassembly
J-1000 PURPOSE
J-2000 POSTDISASSEMBLY TEST RECOMMENDATIONS
J-3000 TEST MATRIX
Table J-2000-1 Check Valve Test Matrix <\/td>\n<\/tr>\n
109<\/td>\nDivision 1, Nonmandatory Appendix K Sample List of Component Deterministic Considerations
K- 1000 PURPOSE
K- 2000 SAMPLE DETERMINISTIC CONSIDERATIONS
K- 2100 Design Basis Analysis
K- 2200 Radioactive Material Release Limit
K- 2300 Maintenance Reliability
K- 2400 Effect of Component Failure on System Operational Readiness
K- 2500 Other Deterministic Considerations <\/td>\n<\/tr>\n
110<\/td>\nDivision 1, Nonmandatory Appendix L Acceptance Guidelines
L-1000 PURPOSE
L 2000 ACCEPTANCE GUIDELINES
L-2100 Background and Introduction <\/td>\n<\/tr>\n
111<\/td>\nFig. L-2100-1 Acceptance Guidelines for CDF ( From RG 1.174) <\/td>\n<\/tr>\n
112<\/td>\nFig. L-2100-2 Acceptance Guidelines for LERF ( From RG 1.174) <\/td>\n<\/tr>\n
113<\/td>\nDivision 1, Nonmandatory Appendix M Design Guidance for Nuclear Power Plant Systems and Component Testing
M-1000 PURPOSE
M-2000 BACKGROUND
M-3000 GUIDANCE
M-3100 General Test Capability Guidance <\/td>\n<\/tr>\n
114<\/td>\nM-3200 Subsection ISTF (Pumps) <\/td>\n<\/tr>\n
115<\/td>\nM-3300 Subsection ISTC (Valves) <\/td>\n<\/tr>\n
116<\/td>\nM-3400 Subsection ISTD (Snubbers) <\/td>\n<\/tr>\n
117<\/td>\nM-3500 Other Considerations
M-3600 Division 2, Part 28 (System Testing Capability) <\/td>\n<\/tr>\n
118<\/td>\nM-4000 REFERENCES <\/td>\n<\/tr>\n
120<\/td>\nDIVISION 2: OM STANDARDS CONTENTS <\/td>\n<\/tr>\n
124<\/td>\nPart 2 Performance Testing of Closed Cooling Water Systems in Light-Water Reactor Power Plants <\/td>\n<\/tr>\n
125<\/td>\nPart 3 Vibration Testing of Piping Systems
1 SCOPE
2 DEFINITIONS <\/td>\n<\/tr>\n
126<\/td>\n3 GENERAL REQUIREMENTS
Fig. 1 Typical Components of a Vibration Monitoring System (VMS) <\/td>\n<\/tr>\n
127<\/td>\n3.1 Classification <\/td>\n<\/tr>\n
128<\/td>\n3.2 Monitoring Requirements and Acceptance Criteria
Table 1 System Tolerances <\/td>\n<\/tr>\n
130<\/td>\n4 VISUAL INSPECTION METHOD
4.1 Objective
4.2 Evaluation Techniques
4.3 Precautions
5 SIMPLIFIED METHOD FOR QUALIFYING PIPING SYSTEMS
5.1 Steady-State Vibration <\/td>\n<\/tr>\n
131<\/td>\nFig. 2 Deflection Measurement at the Intersection of Pipe and Elbow
Fig. 3 Single Span Deflection Measurement
Fig. 4 Cantilever Span Deflection Measurement
Fig. 5 Cantilever Span\/Elbow Span in-Plane Deflection Measurement <\/td>\n<\/tr>\n
132<\/td>\nFig. 6 Cantilever Span\/Elbow Guided Span in-Plane Deflection Measurement
Fig. 7 Span\/Elbow Span Out-of-Plane Deflection Measurement, Span Ratio < 0.5
Fig. 8 Span\/Elbow Span Out-of-Plane Deflection Measurement, Span Ratio > 0.5
Fig. 9 Span\/Elbow Span Out-of-Plane Configuration Coefficient Versus Ratio of Spans <\/td>\n<\/tr>\n
134<\/td>\n5.2 Transient Vibration
Fig. 10 Correction Factor C1 <\/td>\n<\/tr>\n
135<\/td>\n5.3 Inaccessible Piping (for Both Steady-State and Transient Vibration Evaluation)
6 RIGOROUS VERIFICATION METHOD FOR STEADY-STATE AND TRANSIENT VIBRATION
6.1 Modal Response Technique <\/td>\n<\/tr>\n
136<\/td>\n6.2 Measured Stress Technique
7 INSTRUMENTATION AND VIBRATION MEASUREMENT REQUIREMENTS
7.1 General Requirements <\/td>\n<\/tr>\n
137<\/td>\n8 CORRECTIVE ACTION
Table 2 Examples of Specifications of VMS Minimum Requirements; Measured Variable \u2014 Displacement <\/td>\n<\/tr>\n
138<\/td>\nPart 3, Nonmandatory Appendix A Instrumentation and Measurement Guidelines
A-1 VISUAL METHODS (VMG 3)
A-2 ELECTRONIC MEASUREMENT METHODS (VMG 2 AND VMG 1)
A-2.1 Transducers <\/td>\n<\/tr>\n
139<\/td>\nA-2.2 Cables
A-2.3 Signal Conditioner <\/td>\n<\/tr>\n
140<\/td>\nA-2.4 Auxiliary Equipment <\/td>\n<\/tr>\n
141<\/td>\nPart 3, Nonmandatory Appendix B Analysis Methods
B-1 FOURIER TRANSFORM METHOD
B-2 OTHER METHODS <\/td>\n<\/tr>\n
142<\/td>\nPart 3, Nonmandatory Appendix C Test\/Analysis Correlation Methods
C-1 TEST\/ANALYSIS CORRELATION
C-2 EVALUATION OF THE MEASURED RESPONSES <\/td>\n<\/tr>\n
143<\/td>\nPart 3, Nonmandatory Appendix D Velocity Criterion
D-1 VELOCITY CRITERION
D-2 SCREENING VELOCITY CRITERION
D-3 USE OF SCREENING VIBRATION VELOCITY VALUE <\/td>\n<\/tr>\n
144<\/td>\nPart 3, Nonmandatory Appendix E Excitation Mechanisms, Responses, and Corrective Actions
E-1 EXCITATION MECHANISMS AND PIPING RESPONSES
E-1.1 Excitation Mechanisms <\/td>\n<\/tr>\n
145<\/td>\nE-1.2 Piping Responses
E-2 ADDITIONAL TESTING AND ANALYSIS <\/td>\n<\/tr>\n
146<\/td>\nPart 3, Nonmandatory Appendix F Flowchart \u2014 Outline of Vibration Qualification of Piping Systems <\/td>\n<\/tr>\n
147<\/td>\nFig. F-1 Flowchart \u2014 Outline of Vibration Qualification of Piping Systems <\/td>\n<\/tr>\n
148<\/td>\nPart 3, Nonmandatory Appendix G Qualitative Evaluations <\/td>\n<\/tr>\n
149<\/td>\nPart 3, Nonmandatory Appendix H Guidance for Monitoring Piping Steady-State Vibration Per Vibration Monitoring Group 2
H-1 PURPOSE
H-2 ASSUMPTIONS
H-3 IMPLEMENTATION
H-3.1 Quantitative Evaluations <\/td>\n<\/tr>\n
150<\/td>\nFig. H-1 Monitoring and Qualification of Piping Steady-State Vibration <\/td>\n<\/tr>\n
151<\/td>\nH-3.2 Qualitative Evaluations <\/td>\n<\/tr>\n
152<\/td>\nTable H-1 Recommended Actions for Piping Vibration Problem Resolution <\/td>\n<\/tr>\n
153<\/td>\nH-4 ALLOWABLE DISPLACEMENT LIMIT
H-4.1 Characteristic Span
H-4.2 Node Points <\/td>\n<\/tr>\n
154<\/td>\nPart 3, Nonmandatory Appendix I <\/td>\n<\/tr>\n
155<\/td>\nFig. I-1 Determination of LE and WT <\/td>\n<\/tr>\n
156<\/td>\nPart 12 Loose Part Monitoring in Light-Water Reactor Power Plants
1 INTRODUCTION
1.1 Scope
1.2 Overview
2 DEFINITIONS <\/td>\n<\/tr>\n
157<\/td>\n3 REFERENCES <\/td>\n<\/tr>\n
158<\/td>\n4 EQUIPMENT
4.1 General
4.2 Field Equipment <\/td>\n<\/tr>\n
159<\/td>\nFig. 1 Typical Broadband Sensor Response to Nearby Impact
Fig. 2 Typical Broadband Sensor Response to More Distant Impact <\/td>\n<\/tr>\n
160<\/td>\nFig. 3 Range of Loose Part Signal Amplitude and Predominant Frequency Content
Fig. 4 Field Equipment <\/td>\n<\/tr>\n
161<\/td>\nFig. 5 Direct Stud Mount
Fig. 6 Clamped Mount <\/td>\n<\/tr>\n
162<\/td>\nTable 1 Recommended PWR Accelerometer Locations <\/td>\n<\/tr>\n
163<\/td>\nFig. 7 Recommended Sensor Array for PWR With U- Tube Steam Generator <\/td>\n<\/tr>\n
164<\/td>\nFig. 8 Recommended Sensor Array for PWR With Once- Through Steam Generator
Table 2 Recommended BWR Accelerometer Locations <\/td>\n<\/tr>\n
165<\/td>\nFig. 9 Recommended Sensor Array for BWR <\/td>\n<\/tr>\n
166<\/td>\n4.3 Control Cabinet Equipment <\/td>\n<\/tr>\n
167<\/td>\n4.4 Analysis and Diagnostic Equipment <\/td>\n<\/tr>\n
168<\/td>\n5 PROGRAM ELEMENTS
5.1 General
5.2 ALARA
5.3 Precautions
5.4 Calibration
5.5 Baseline Impact Testing <\/td>\n<\/tr>\n
169<\/td>\nFig. 10 Block Diagram for Charge Converter Calibration Tests <\/td>\n<\/tr>\n
170<\/td>\nFig. 11 Cable Properties (Typical for Twisted\u2013Shielded Pair Cable)
5.6 Initial LPM Setpoints
5.7 Heat-Up and Cool-Down Monitoring <\/td>\n<\/tr>\n
171<\/td>\n5.8 Periodic Monitoring and Testing
5.9 Alarm Response and Diagnostics <\/td>\n<\/tr>\n
172<\/td>\n6 DOCUMENTATION <\/td>\n<\/tr>\n
173<\/td>\nPart 12, Nonmandatory Appendix A References <\/td>\n<\/tr>\n
174<\/td>\nPart 16 Performance Testing and Monitoring of Standby Diesel Generator Systems in Light-Water Reactor Power Plants
1 INTRODUCTION
1.1 Scope
1.2 Purpose
1.3 Risk-Informed Analysis
1.4 Subsystems Included Within the Diesel Generator Boundary <\/td>\n<\/tr>\n
175<\/td>\nFig. 1 Boundary and Support Systems of Emergency Diesel Generator Systems <\/td>\n<\/tr>\n
176<\/td>\n1.5 Definitions <\/td>\n<\/tr>\n
177<\/td>\n2 NONOPERATING CHECKS
2.1 Post-Maintenance Checks
2.2 Pre-Start Checks
3 TESTING
3.1 Post-Maintenance\/Baseline Testing <\/td>\n<\/tr>\n
178<\/td>\n3.2 Periodic Tests <\/td>\n<\/tr>\n
179<\/td>\nTable 1 Periodic Tests <\/td>\n<\/tr>\n
181<\/td>\n3.3 Other Testing Guidelines
4 INSERVICE MONITORING OF COMPONENT OPERATING AND STANDBY CONDITIONS <\/td>\n<\/tr>\n
182<\/td>\n4.1 Engine
4.2 Lubrication Subsystem
4.3 Jacket Water and Intercooler Subsystem
4.4 Starting Subsystem
4.5 Combustion Air Intake Subsystem
4.6 Exhaust Subsystem
4.7 Fuel Oil Subsystem <\/td>\n<\/tr>\n
183<\/td>\n4.8 Crankcase Ventilation Subsystem
4.9 Governor and Control Subsystem
4.10 Generator Subsystem
4.11 Ventilation and Cooling Subsystem
4.12 Exciter and Voltage Regulator Subsystem
4.13 Control and Protection Subsystem
4.14 Diesel Generator Output Breaker
5 OTHER CONDITION MONITORING METHODS\/GUIDELINES
5.1 Diesel Engine Analysis <\/td>\n<\/tr>\n
184<\/td>\n5.2 Vibration Analysis
5.3 Lube Oil Analysis <\/td>\n<\/tr>\n
185<\/td>\n5.4 Cooling Water Analysis
5.5 Thermography
6 ALARM AND SHUTDOWN DURING TESTS <\/td>\n<\/tr>\n
186<\/td>\n7 DIESEL GENERATOR OPERATING DATA AND RECORDS
7.1 Data\/Records
7.2 Data Evaluation and Trending
7.3 Failure to Function (Root Cause) <\/td>\n<\/tr>\n
187<\/td>\nPart 16, Nonmandatory Appendix A Post-Major Maintenance Test Data
Fig. A-1 Post-Major Maintenance Test Data Form <\/td>\n<\/tr>\n
188<\/td>\nPart 16, Nonmandatory Appendix B Functional\/Inservice Test Data
Fig. B- 1 Functional\/ Inservice Test Data Form <\/td>\n<\/tr>\n
189<\/td>\nPart 16, Nonmandatory Appendix C Data Trending Examples <\/td>\n<\/tr>\n
190<\/td>\nFig. C-1 Typical Lube Oil System <\/td>\n<\/tr>\n
191<\/td>\nFig. C-2 Typical Jacket Water System <\/td>\n<\/tr>\n
192<\/td>\nFig. C-3 Intercooler Water System <\/td>\n<\/tr>\n
193<\/td>\nFig. C-4 Typical Air\/Exhaust System <\/td>\n<\/tr>\n
194<\/td>\nFig. C-5 Typical Fuel Oil System <\/td>\n<\/tr>\n
195<\/td>\nPart 21 Inservice Performance Testing of Heat Exchangers in Light-Water Reactor Power Plants
1 INTRODUCTION
1.1 Scope
1.2 Exclusions
1.3 Owner’s Responsibility
2 DEFINITIONS <\/td>\n<\/tr>\n
197<\/td>\n3 REFERENCES
3.1 Standard References
3.2 Appendix References
4 SELECTION AND PRIORITIZATION OF HEAT EXCHANGERS
4.1 Heat Exchanger Selection <\/td>\n<\/tr>\n
198<\/td>\n4.2 Heat Exchanger Prioritization
5 BASIC REQUIREMENTS
5.1 Program Requirements
5.2 Preservice Requirements
5.3 Inservice Requirements <\/td>\n<\/tr>\n
199<\/td>\n5.4 Interval Requirements
6 SELECTION OF METHODS
6.1 Functional Test Method
6.2 Heat-Transfer Coefficient Test Method (Without Phase Change) <\/td>\n<\/tr>\n
200<\/td>\nFig. 1 Intervals, Limits, and Parameter Trending (Typical) <\/td>\n<\/tr>\n
201<\/td>\nFig. 2 Method Selection Chart <\/td>\n<\/tr>\n
202<\/td>\n6.3 Heat-Transfer Coefficient Test Method (With Condensation) <\/td>\n<\/tr>\n
203<\/td>\n6.4 Transient Test Method
6.5 Temperature Effectiveness Test Method <\/td>\n<\/tr>\n
204<\/td>\n6.6 Batch Test Method <\/td>\n<\/tr>\n
205<\/td>\n6.7 Temperature-Difference Monitoring Method
6.8 Pressure-Loss Monitoring Method
6.9 Visual Inspection Monitoring Method <\/td>\n<\/tr>\n
206<\/td>\n6.10 Parameter Trending
7 TESTING AND MONITORING CONDITIONS
7.1 Steady State <\/td>\n<\/tr>\n
207<\/td>\n7.2 Flow Regimes
7.3 Temperatures
8 ERRORS, SENSITIVITIES, AND UNCERTAINTIES <\/td>\n<\/tr>\n
208<\/td>\n8.1 Measurement Errors
8.2 Result Sensitivities
8.3 Total Uncertainty
8.4 Calculations and Averaging
8.5 Validity Check <\/td>\n<\/tr>\n
209<\/td>\n8.6 Correlational Uncertainty
9 ACCEPTANCE CRITERIA
9.1 System Operability Limits
9.2 Component Design Limits
9.3 Required Action Limits <\/td>\n<\/tr>\n
210<\/td>\n10 CORRECTIVE ACTION
11 RECORDS AND RECORD KEEPING
11.1 Equipment Records
11.2 Plans and Procedures
11.3 Record of Results <\/td>\n<\/tr>\n
211<\/td>\n11.4 Record of Corrective Action <\/td>\n<\/tr>\n
212<\/td>\nPart 21, Nonmandatory Appendix A Diagnostics
A-1 HEAT DUTY DEFICIENCY
A-1.1 Cooling Fluid Side Fouling
A-1.2 Process Fluid Side Fouling
A-1.3 Mechanical Dysfunction
A-1.4 Testing Errors
A-1.5 Computational Errors <\/td>\n<\/tr>\n
213<\/td>\nA-2 EXCESSIVE PRESSURE LOSS
A-2.1 Tube-Side Pressure Loss
A-2.2 Shell-Side Pressure Loss
A-2.3 Plate Heat Exchanger Pressure Loss
A-3 MECHANICAL DYSFUNCTION
A-3.1 Tube Vibration
A-3.2 Interfluid Leakage
A-3.3 Air In-Leakage <\/td>\n<\/tr>\n
214<\/td>\nA-3.4 Internal Bypass Flow <\/td>\n<\/tr>\n
215<\/td>\nPart 21, Nonmandatory Appendix B Precautions
B-1 EXCESSIVE FLOW
B-2 CROSSING FLOW REGIMES
B-3 TEMPERATURE STRATIFICATION
B-4 OVERCOOLING
B-5 FLASHING <\/td>\n<\/tr>\n
216<\/td>\nB-6 EFFECTIVE SURFACE AREA
B-7 WATER HAMMER
B-8 MISCELLANEOUS CONSIDERATIONS
B-9 FLOW INSTABILITY
B-10 PLATE HEAT EXCHANGERS
B-10.1 Torque Requirements
B-10.2 Flow Stability
B-11 FOULING CHARACTERISTICS
B-12 COMPONENT DESIGN FUNCTION <\/td>\n<\/tr>\n
217<\/td>\nB-13 THERMAL DELAYS
B-14 MATERIAL PROPERTIES <\/td>\n<\/tr>\n
218<\/td>\nPart 21, Nonmandatory Appendix C Examples
C-1 FUNCTIONAL TEST METHOD
C-1.1 Establish Cooling Water Maximum Design Conditions
C-1.2 Establish Flow
C-1.3 Establish Temperature of Interest Design Conditions
C-1.4 Compare the Temperature of Interest to the Acceptance Criteria
C-2 HEAT TRANSFER COEFFICIENT TEST METHOD (WITHOUT PHASE CHANGE) <\/td>\n<\/tr>\n
219<\/td>\nC-2.1 Evaluation at Design Accident Conditions (MTD Method) <\/td>\n<\/tr>\n
222<\/td>\nC-2.2 Evaluation at Test Conditions <\/td>\n<\/tr>\n
227<\/td>\nC-2.3 Projection at Design Accident Conditions <\/td>\n<\/tr>\n
228<\/td>\nC-3 HEAT TRANSFER COEFFICIENT TEST METHOD (WITH CONDENSATION)
C-3.1 Collect the Test Data
C-3.2 Write the Finite Difference Equations <\/td>\n<\/tr>\n
229<\/td>\nFig. C-1 One Tube Row Air-to-Water Cross-Flow Heat Exchanger <\/td>\n<\/tr>\n
230<\/td>\nFig. C-2 Fin, Condensate Layer, and Interfaces <\/td>\n<\/tr>\n
233<\/td>\nC-3.3 Solve the Finite Difference Equations and Evaluate Fouling Resistance
C-4 TRANSIENT TEST METHOD <\/td>\n<\/tr>\n
234<\/td>\nC-4.1 Establish the Initial Conditions
C-4.2 Collect the Temperature and Flow Rate Data
C-4.3 Write the Finite Difference Equations <\/td>\n<\/tr>\n
235<\/td>\nFig. C-3 Schematic Representation of a Countercurrent Shell-and-Tube Heat Exchanger
Fig. C-4 A Small Element of a Countercurrent Shell-and-Tube Heat Exchanger <\/td>\n<\/tr>\n
237<\/td>\nC-4.4 Solve the Finite Difference Equations and Evaluate the Fouling Resistance
C-5 TEMPERATURE EFFECTIVENESS TEST METHOD <\/td>\n<\/tr>\n
238<\/td>\nC-5.1 Establish Flows
C-5.2 Collect the Temperature Data
C-5.3 Calculate the Capacity Rate Ratio
C-5.4 Calculate the Temperature Effectiveness
C-5.5 Calculate the Projected Temperatures <\/td>\n<\/tr>\n
239<\/td>\nC-6 BATCH TEST METHOD
C-6.1 Calculate the Thermal Capacity of the Process Fluid
C-6.2 Calculate the Temperature Effectiveness <\/td>\n<\/tr>\n
240<\/td>\nC-6.3 Calculate the Capacity Rate Ratio
C-6.4 Calculate NTU
C-6.5 Calculate Ut (NTU Method)
C-7 TEMPERATURE DIFFERENCE MONITORING METHOD <\/td>\n<\/tr>\n
241<\/td>\nFig. C-5 Cooling Water Inlet Temperature Versus Temperature Difference <\/td>\n<\/tr>\n
242<\/td>\nC-7.1 Calculate the Temperature Difference at Design Accident Conditions
C-7.2 Plot the Design Accident Condition Data
C-7.3 Extrapolate the Design Data to Determine the Acceptable Range
C-7.4 Calculate the Temperature Difference at Test Conditions
C-7.5 Plot the Test Data Against the Design Data
C-8 PRESSURE LOSS MONITORING METHOD
C-8.1 Establish Flow and Collect Flow Data <\/td>\n<\/tr>\n
243<\/td>\nC-8.2 Collect the Pressure Loss Data
C-8.3 The Corrected Pressure Loss
C-8.4 Calculate the Average Corrected Pressure Loss
C-9 VISUAL INSPECTION MONITORING METHOD
C-9.1 Inspection Types <\/td>\n<\/tr>\n
244<\/td>\nC-9.2 Monitoring Techniques
C-10 PARAMETER TRENDING
C-10.1 Test Parameters
C-10.2 Monitored Parameters <\/td>\n<\/tr>\n
245<\/td>\nC-10.3 Other Parameters
C-11 UNCERTAINTY ANALYSIS
C-11.1 Measurement Errors <\/td>\n<\/tr>\n
248<\/td>\nC-11.2 Result Sensitivities
C-11.3 Total Uncertainty
C-11.4 Calculated Parameters <\/td>\n<\/tr>\n
249<\/td>\nPart 24 Reactor Coolant and Recirculation Pump Condition Monitoring
1 INTRODUCTION
1.1 Scope
1.2 Approach
2 DEFINITIONS <\/td>\n<\/tr>\n
251<\/td>\n3 REFERENCES
4 MACHINE FAULTS
4.1 Introduction
5 VIBRATION, AXIAL POSITION, AND BEARING TEMPERATURE MONITORING EQUIPMENT
5.1 General <\/td>\n<\/tr>\n
252<\/td>\nTable 1 Pumpset Mechanical Faults
Table 2 Seal Faults <\/td>\n<\/tr>\n
253<\/td>\n5.2 Monitoring System
5.3 Radial Proximity Sensor Locations
Table 3 Electrical Motor Faults <\/td>\n<\/tr>\n
254<\/td>\n5.4 Axial Proximity Sensor Locations
5.5 Phase-Reference Sensor Location
5.6 Bearing Temperature Sensors
5.7 Sensor Locations for Optional Accelerometers
5.8 Other Specifications
6 VIBRATION DATA ANALYSIS SYSTEM REQUIREMENTS
6.1 Introduction
6.2 Data Acquisition for Dynamic Signals <\/td>\n<\/tr>\n
255<\/td>\n6.3 System Accuracy and Calibration
6.4 Data Analysis and Display
6.5 Data Storage <\/td>\n<\/tr>\n
256<\/td>\n6.6 Continuous Display of Dynamic Signals
7 SEAL MONITORING
7.1 Introduction
7.2 Monitoring System
7.3 Monitoring and Analysis Requirements <\/td>\n<\/tr>\n
257<\/td>\n7.4 Seal Alarm Response
7.5 Enhanced Monitoring of a Troubled Seal
Table 4 Minimum Monitoring and Recording Intervals
8 VIBRATION, AXIAL POSITION, AND BEARING TEMPERATURE MONITORING
8.1 Introduction
8.2 Postmaintenance Monitoring <\/td>\n<\/tr>\n
258<\/td>\n8.3 Baseline
8.4 Periodic Monitoring <\/td>\n<\/tr>\n
259<\/td>\n8.5 Preoutage Coastdown
8.6 Vibration Alarm Response
8.7 Enhanced Monitoring of a Troubled Pumpset
9 ALARM SETTINGS
9.1 Determining Alarm Points for Overall Vibration Amplitude
9.2 Determining 1\u00d7 and 2\u00d7 Vector Acceptance Regions <\/td>\n<\/tr>\n
260<\/td>\n9.3 Determining Alarm Points for Thrust Position
9.4 Determining Alarm Points for Bearing Temperature
9.5 Alarm Settings
Table 5 Typical Thrust Position Alarm Setpoints for a Pump With Normal Upthrust
10 ANALYSIS AND DIAGNOSTICS
10.1 Introduction
10.2 Data Types
10.3 Analysis Methods <\/td>\n<\/tr>\n
261<\/td>\n10.4 Data Analysis
11 ADDITIONAL TECHNOLOGIES
11.1 Thermography
11.2 Lube Oil Analysis
11.3 Motor Current Signature Analysis
11.4 Motor Electrical Monitoring and Testing
11.5 Loose Parts Monitoring <\/td>\n<\/tr>\n
262<\/td>\n12 OTHER
12.1 Calibrations
12.2 Quality <\/td>\n<\/tr>\n
263<\/td>\nPart 24, Nonmandatory Appendix A References <\/td>\n<\/tr>\n
264<\/td>\nPart 24, Nonmandatory Appendix B Thermography <\/td>\n<\/tr>\n
265<\/td>\nPart 24, Nonmandatory Appendix C Lube Oil Analysis <\/td>\n<\/tr>\n
266<\/td>\nPart 24, Nonmandatory Appendix D Motor Current Signature Analysis <\/td>\n<\/tr>\n
267<\/td>\nPart 24, Nonmandatory Appendix E Loose Parts Monitoring <\/td>\n<\/tr>\n
268<\/td>\nPart 25 Performance Testing of Emergency Core Cooling Systems in Light-Water Reactor Power Plants <\/td>\n<\/tr>\n
269<\/td>\nPart 26 Determination of Reactor Coolant Temperature From Diverse Measurements
1 INTRODUCTION
1.1 Scope
1.2 Applicability
1.3 Basic Methodology
2 DEFINITIONS <\/td>\n<\/tr>\n
270<\/td>\n3 REFERENCES
4 REQUIREMENTS
4.1 Plant Conditions
4.2 Test Equipment
4.3 Uncertainty Methodologies
5 DEVELOP TEST PROCEDURES AND PERFORM TESTING <\/td>\n<\/tr>\n
271<\/td>\n5.1 Establish Primary-to-Secondary Side \u0394Tps
5.2 Test Procedure Development
5.3 Perform Test <\/td>\n<\/tr>\n
272<\/td>\n6 DOCUMENTATION <\/td>\n<\/tr>\n
273<\/td>\nPart 26, Nonmandatory Appendix A Measurement Equipment Uncertainties <\/td>\n<\/tr>\n
274<\/td>\nPart 28 Standard for Performance Testing of Systems in Light-Water Reactor Power Plants
1 INTRODUCTION
1.1 Scope
1.2 Exclusions
1.3 Owner’s Responsibilities
2 DEFINITIONS <\/td>\n<\/tr>\n
275<\/td>\n3 REFERENCES
4 GENERAL TESTING REQUIREMENTS
4.1 Establish System Test Boundaries
4.2 Identify System Performance Requirements <\/td>\n<\/tr>\n
276<\/td>\n4.3 Identify Testable Characteristics
4.4 Establish Acceptance Criteria
4.5 Develop Test Procedures and Perform Testing, Inspections, and Engineering Analysis <\/td>\n<\/tr>\n
280<\/td>\n5 SPECIFIC TESTING REQUIREMENTS
5.1 Emergency Core Cooling Systems
5.2 Auxiliary or Emergency Feedwater Systems
5.3 Closed Cooling Water Systems
5.4 Emergency Service Water Systems
5.5 Instrument Air Systems
6 EVALUATE TEST DATA
6.1 Compare Data to Acceptance Criteria
6.2 Trend Test Data
6.3 Evaluate Test Interval
7 DOCUMENTATION <\/td>\n<\/tr>\n
281<\/td>\n7.1 System Test Plan
7.2 Test Results and Corrective Actions <\/td>\n<\/tr>\n
282<\/td>\nPart 28, Mandatory Appendix I Specific Testing Requirements of Emergency Core Cooling Systems in BWR Power Plants
I-1 INTRODUCTION
I-2 DEFINITIONS
I-3 REFERENCE
I-4 BWR ECCS TESTING REQUIREMENTS
I-4.1 Establish System Testing Boundaries
I-4.2 Identify System Performance Requirements
I-4.3 Identify Testable Characteristics That Represent Performance Requirements <\/td>\n<\/tr>\n
283<\/td>\nI-4.4 Establish Characteristic Acceptance Criteria
I-4.5 Develop Test Procedures and Perform Testing, Inspections, and Engineering Analysis <\/td>\n<\/tr>\n
286<\/td>\nPart 28, Mandatory Appendix II Specific Testing Requirements of Emergency Core Cooling Systems in PWR Power Plants
II-1 INTRODUCTION
II-2 DEFINITIONS
II-3 REFERENCES
II-4 PWR ECCS TESTING REQUIREMENTS
II-4.1 Establish System Testing Boundaries
II-4.2 Identify System Performance Requirements
II-4.3 Identify Testable Characteristics That Represent Performance Requirements <\/td>\n<\/tr>\n
287<\/td>\nII-4.4 Establish Characteristic Acceptance Criteria
II-4.5 Develop Test Procedures and Perform Testing, Inspections, and Engineering Analysis <\/td>\n<\/tr>\n
289<\/td>\nPart 28, Mandatory Appendix III Specific Testing Requirements of Auxiliary or Emergency Feedwater Systems in LWR Power Plants
III-1 INTRODUCTION
III-2 DEFINITION
III-3 REFERENCES
III-4 AUXILIARY FEEDWATER SYSTEM TESTING REQUIREMENTS
III-4.1 Establish System Testing Boundaries
III-4.2 Identify System Performance Requirements
III-4.3 Identify Testable Characteristics That Represent Performance Requirements <\/td>\n<\/tr>\n
290<\/td>\nIII-4.4 Establish Characteristic Acceptance Criteria
III-4.5 Develop Test Procedures and Perform Testing, Inspections, and Engineering Analysis <\/td>\n<\/tr>\n
291<\/td>\nPart 28, Mandatory Appendix IV Specific Testing Requirements of Closed Cooling Water Systems in LWR Power Plants
IV-1 INTRODUCTION
IV-2 DEFINITIONS
IV-3 CLOSED COOLING WATER SYSTEM TESTING REQUIREMENTS
IV-3.1 Establish System Test Boundaries
IV-3.2 Identify System Performance Requirements
IV-3.3 Identify Testable Characteristics That Represent Performance Requirements <\/td>\n<\/tr>\n
292<\/td>\nFig. IV-1 CCWS Typical Flow Diagram <\/td>\n<\/tr>\n
293<\/td>\nIV-3.4 Establish Acceptance Criteria for Testable Characteristics
IV-3.5 Develop Test Procedures and Perform Testing, Inspections, and Engineering Analysis <\/td>\n<\/tr>\n
295<\/td>\nPart 28, Mandatory Appendix V Specific Testing Requirements of Emergency Service Water Systems in LWR Power Plants (Open Cooling Water Systems)
V-1 INTRODUCTION
V-2 DEFINITIONS
V-3 EMERGENCY SERVICE WATER SYSTEM TEST REQUIREMENTS
V-4 ESTABLISH SYSTEM TEST BOUNDARIES
V-4.1 General
V-4.2 Identify System Performance Requirements
V-4.3 Identify Testable Characteristics That Represent Performance Requirements <\/td>\n<\/tr>\n
296<\/td>\nV-4.4 Establish Acceptance Criteria for Testable Characteristics
V-4.5 Develop Test Procedures and Perform Testing, Inspections, and Engineering Analysis <\/td>\n<\/tr>\n
298<\/td>\nPart 28, Mandatory Appendix VI Specific Testing Requirements of Instrument Air Systems in LWR Power Plants
VI-1 INTRODUCTION
VI-2 DEFINITIONS
VI-3 INSTRUMENT AIR SYSTEM TESTING REQUIREMENTS
VI-3.1 Establish System Testing Boundaries <\/td>\n<\/tr>\n
299<\/td>\nFig. VI-1 Typical Instrument Air System <\/td>\n<\/tr>\n
300<\/td>\nVI-3.2 Identify System Performance Requirements
VI-3.3 Identify Testable Characteristics That Represent Performance Requirements
VI-3.4 Establish Characteristic Acceptance Criteria
VI-3.5 Develop Test Procedures and Perform Testing, Inspections, and Engineering Analysis <\/td>\n<\/tr>\n
303<\/td>\nPart 28, Nonmandatory Appendix A Industry Guidance <\/td>\n<\/tr>\n
304<\/td>\nTable A-1 LWR Operating Experience Information <\/td>\n<\/tr>\n
307<\/td>\nPart 28, Nonmandatory Appendix B Guidance for Testing Certain System Characteristics
B-1 PURPOSE
B-2 VERIFYING ECCS ACCUMULATOR DISCHARGE FLOW PATH RESISTANCE IN PWRS
B-3 TYPICAL PROCESS SUBSYSTEM
B-4 IDENTIFYING AND VERIFYING PUMP TDH VERSUS FLOW ACCEPTANCE CRITERIA
B-5 VERIFYING DISCHARGE FLOW PATH RESISTANCE <\/td>\n<\/tr>\n
308<\/td>\nFig. B-1 Typical Branch Line System
Fig. B-2 Verifying Pump TDH Versus Flow: Correction of Measured Data for Instrument Accuracy <\/td>\n<\/tr>\n
309<\/td>\nFig. B-3 Verifying Pump TDH Versus Flow: Correction of Analysis Limits for Instrument Accuracy <\/td>\n<\/tr>\n
310<\/td>\nFig. B-4 Verifying Discharge Piping Overall Resistance: Correction of Measured Data for Instrument Accuracy
Fig. B-5 Verifying Discharge Piping Overall Resistance: Correction of Analysis Limits for Instrument Accuracy <\/td>\n<\/tr>\n
311<\/td>\nB-6 VERIFYING BALANCED BRANCH LINE RESISTANCE
B-7 SYSTEM ADJUSTMENTS
B-7.1 Acceptance Criteria: Section B-4
B-7.2 Acceptance Criteria: Section B-5 or B-6 <\/td>\n<\/tr>\n
312<\/td>\nFig. B-6 Measured Subsystem Operating Point and Range of Operating Points Allowed by Analysis Limits <\/td>\n<\/tr>\n
313<\/td>\nPart 28, Nonmandatory Appendix C Measurement Accuracy of System Characteristics
C-1 BACKGROUND
C-2 NOMENCLATURE <\/td>\n<\/tr>\n
314<\/td>\nC-3 SENSITIVITY COEFFICIENTS
C-4 ACCURACY OF DIRECTLY MEASURED VARIABLES
C-5 ACCURACY OF DERIVED VARIABLES
C-6 ACCURACY OF FLOW RATE <\/td>\n<\/tr>\n
315<\/td>\nC-6.1 Flow Coefficient
C-6.2 Orifice Bore Diameter
C-6.3 Orifice Differential Pressure
C-6.4 Specific Volume
C-7 ACCURACY OF PUMP TDH <\/td>\n<\/tr>\n
316<\/td>\nC-8 ACCURACY OF SYSTEM RESISTANCE
C-9 EXAMPLE EVALUATION OF PUMP TDH ACCURACY <\/td>\n<\/tr>\n
317<\/td>\nC-9.1 Evaluation of Accuracy of Measurement of Pump Performance
Table C-1 Recorded Test Data
Table C-2 Calculated Pump Head
Table C-3 Sensitivity Coefficients for Pump TDH <\/td>\n<\/tr>\n
319<\/td>\nC-9.2 Results
Table C-4 Pump TDH Overall Accuracy Calculation <\/td>\n<\/tr>\n
320<\/td>\nPart 29 Alternative Treatment Requirements for RISC-3 Pumps and Valves
1 INTRODUCTION
1.1 Scope
1.2 Exclusions Identification
1.3 Owner’s Responsibility
2 DEFINITIONS
3 GENERAL PROGRAMMATIC REQUIREMENTS FOR RISC-3 PUMPS AND VALVES
3.1 Component Scope
3.2 Reasonable Confidence
3.3 Industrial Practices
3.4 Functional Requirements <\/td>\n<\/tr>\n
321<\/td>\n4 ALTERNATIVE TREATMENT FOR REASONABLE CONFIDENCE OF RISC-3 PUMP AND VALVE PERFORMANCE
4.1 Alternative Treatment Goals
4.2 Alternative Treatment Considerations
4.3 Alternative Treatment Selection for Reasonable Confidence
5 CORRECTIVE ACTION <\/td>\n<\/tr>\n
322<\/td>\n6 FEEDBACK AND TREATMENT ADJUSTMENT
7 RECORDS <\/td>\n<\/tr>\n
324<\/td>\nDIVISION 3: OM GUIDES CONTENTS <\/td>\n<\/tr>\n
327<\/td>\nPart 5 Inservice Monitoring of Core Support Barrel Axial Preload in Pressurized Water Reactor Power Plants
1 PURPOSE AND SCOPE
1.1 Purpose
1.2 Scope
1.3 Application
1.4 Definitions
2 BACKGROUND <\/td>\n<\/tr>\n
328<\/td>\nFig. 1 Reactor Arrangement Showing Typical Ex-Core Detector Locations <\/td>\n<\/tr>\n
329<\/td>\n3 PROGRAM DESCRIPTION
4 BASELINE PHASE
4.1 Objective
4.2 Data Acquisition Periods
4.3 Data Acquisition and Reduction <\/td>\n<\/tr>\n
330<\/td>\nTable 1 Summary of Program Phases <\/td>\n<\/tr>\n
331<\/td>\n4.4 Data Evaluation
5 SURVEILLANCE PHASE
5.1 Objective
5.2 Frequency of Data Acquisition
5.3 Data Acquisition and Reduction
5.4 Data Evaluation
6 DIAGNOSTIC PHASE
6.1 Objective
6.2 Data Acquisition Periods
6.3 Data Acquisition, Reduction, and Evaluation <\/td>\n<\/tr>\n
333<\/td>\nPart 5, Nonmandatory Appendix A Theoretical Basis <\/td>\n<\/tr>\n
334<\/td>\nFig. A-1 Idealized Analysis for Core Barrel Motion <\/td>\n<\/tr>\n
335<\/td>\nPart 5, Nonmandatory Appendix B Data Reduction Techniques
B-1 NORMALIZED POWER SPECTRAL DENSITY (NPSD)
B-2 NORMALIZED ROOT MEAN SQUARE OF THE SIGNAL
B-3 NORMALIZED CROSS-POWER SPECTRAL DENSITY (NCPSD), COHERENCE (COH), AND PHASE (\u03c6)
B-3.1 Normalized Cross-Power Spectral Density (NCPSD)
B-3.2 Coherence (COH) and Phase (\u03c6) <\/td>\n<\/tr>\n
336<\/td>\nFig. B-1 Representative Spectra <\/td>\n<\/tr>\n
337<\/td>\nPart 5, Nonmandatory Appendix C Data Acquisition and Reduction
C-1 INSTRUMENTATION
C-2 SIGNAL CONDITIONING
C-3 DATA ACQUISITION PARAMETERS
C-4 PLANT CONDITIONS FOR DATA ACQUISITION
C-5 DATA REDUCTION PARAMETERS <\/td>\n<\/tr>\n
338<\/td>\nC-6 SIGNAL BUFFERING
C-7 DATA ASSURANCE
C-8 DATA RETENTION
C-9 STATISTICAL UNCERTAINTIES IN NEUTRON NOISE DATA ANALYSIS
Table C-1 Parameters to Be Documented During Data Acquisition <\/td>\n<\/tr>\n
340<\/td>\nPart 5, Nonmandatory Appendix D Data Evaluation
D-1 BASELINE
D-1.1 Normalized Root Mean Square (nrms) Value
D-1.2 Normalized Power Spectral Density (NPSD)
D-1.3 Normalized Cross-Power Spectral Density (NCPSD), Coherence (COH), and Phase (\u03c6) <\/td>\n<\/tr>\n
341<\/td>\nFig. D-1 Narrowband rms <\/td>\n<\/tr>\n
342<\/td>\nFig. D-2 Example of Wideband rms Amplitude Versus Boron Concentration
D-2 SURVEILLANCE PHASE
D-2.1 Root Mean Square
D-2.2 Normalized Cross-Power Spectral Density (NCPSD)
D-2.3 Coherence (COH) and Phase (\u03c6)
D-3 DIAGNOSTIC PHASE
D-3.1 Normalized Root Mean Square (nrms) <\/td>\n<\/tr>\n
343<\/td>\nD-3.2 Normalized Power Spectral Density (NPSD)
D-3.3 Normalized Cross-Power Spectral Density (NCPSD), Coherence (COH), and Phase (\u03c6)
D-3.4 Additional Sources of Information <\/td>\n<\/tr>\n
344<\/td>\nPart 5, Nonmandatory Appendix E Guidelines for Evaluating Baseline Signal Deviations <\/td>\n<\/tr>\n
345<\/td>\nFig. E-1 Typical Ex-Core Neutron Noise Signatures From Six PWRs <\/td>\n<\/tr>\n
346<\/td>\nFig. E-2 Typical Baseline NPSD Range <\/td>\n<\/tr>\n
347<\/td>\nFig. E-3 Examples of Changes in the Neutron Noise Signature Over a Fuel Cycle <\/td>\n<\/tr>\n
348<\/td>\nFig. E-4 Example of Loss of Axial Restraint <\/td>\n<\/tr>\n
349<\/td>\nPart 5, Nonmandatory Appendix F Correlation of rms Amplitude of the Ex-Core Signal (Percent Noise) and Amplitude of Core Barrel Motion
Table F-1 Ratio of the Amplitude of the Neutron Noise to Core Barrel Motion <\/td>\n<\/tr>\n
350<\/td>\nPart 5, Nonmandatory Appendix G Bibliography <\/td>\n<\/tr>\n
351<\/td>\nPart 7 Requirements for Thermal Expansion Testing of Nuclear Power Plant Piping Systems
1 SCOPE
2 DEFINITIONS <\/td>\n<\/tr>\n
352<\/td>\n3 GENERAL REQUIREMENTS
3.1 Specific Requirements <\/td>\n<\/tr>\n
353<\/td>\n3.2 Acceptance Criteria
4 RECONCILIATION METHODS <\/td>\n<\/tr>\n
354<\/td>\nFig. 1 System Heatup, Reconciliation, and Corrective Action <\/td>\n<\/tr>\n
355<\/td>\n4.1 Reconciliation Method 1
4.2 Reconciliation Method 2
4.3 Reconciliation Method 3
5 CORRECTIVE ACTION
6 INSTRUMENTATION REQUIREMENTS FOR THERMAL EXPANSION MEASUREMENT <\/td>\n<\/tr>\n
356<\/td>\nFig. 2 Typical Components of a TEMS
6.1 General Requirements
Table 1 An Example of Specification of TEMS Minimum Requirements <\/td>\n<\/tr>\n
357<\/td>\n6.2 Precautions <\/td>\n<\/tr>\n
358<\/td>\nPart 7, Nonmandatory Appendix A Guidelines for the Selection of Instrumentation and Equipment of a Typical TEMS <\/td>\n<\/tr>\n
359<\/td>\nTable A-1 Typical Transducers <\/td>\n<\/tr>\n
360<\/td>\nTable A-2 Typical Signal Conditioners
Table A-3 Typical Processing Equipment
Table A-4 Typical Display\/Recording Equipment <\/td>\n<\/tr>\n
361<\/td>\nPart 7, Nonmandatory Appendix B Thermal Stratification and Thermal Transients
B-1 INTRODUCTION
B-2 THERMAL STRATIFICATION <\/td>\n<\/tr>\n
362<\/td>\nFig. B-1 Simplified Schematic of Surge Line Stratification
B- 3 THERMAL TRANSIENTS <\/td>\n<\/tr>\n
364<\/td>\nPart 11 Vibration Testing and Assessment of Heat Exchangers
1 INTRODUCTION
1.1 Scope
2 DEFINITIONS
3 REFERENCES
4 BACKGROUND DESCRIPTION <\/td>\n<\/tr>\n
365<\/td>\n5 SELECTION OF EQUIPMENT TO BE TESTED
5.1 Equipment Selection Factors <\/td>\n<\/tr>\n
366<\/td>\n6 SELECTION OF TEST METHOD
6.1 Test Measurement Methods
6.2 Bases for Selection <\/td>\n<\/tr>\n
367<\/td>\n6.3 Precautions
7 TEST REQUIREMENTS
7.1 Direct Measurement of Tube Vibration <\/td>\n<\/tr>\n
368<\/td>\nFig. 1 Tube Bundle Configuration With Tube Groupings Most Susceptible to Fluidelastic Instability Denoted by Cross-Hatching <\/td>\n<\/tr>\n
372<\/td>\n7.2 Microphone Scan for Tube Impacting <\/td>\n<\/tr>\n
373<\/td>\n7.3 External Monitoring for Impacting <\/td>\n<\/tr>\n
374<\/td>\n8 TEST CONDITIONS
8.1 Shell-Side Flow Rate
8.2 Rough Process Conditions
9 DOCUMENTATION
10 PRECAUTIONS <\/td>\n<\/tr>\n
375<\/td>\nPart 11, Nonmandatory Appendix A Causes of Vibration
A-1 DISCUSSION <\/td>\n<\/tr>\n
376<\/td>\nFig. A-1 Root Mean Square (rms) Acceleration Versus Flow Rate From Three Typical Tubes <\/td>\n<\/tr>\n
377<\/td>\nFig. A-2 Tube Response PSDs for Various Shell- Side Flow Rates (Ordinate Not to Scale) <\/td>\n<\/tr>\n
378<\/td>\nA-2 REFERENCES <\/td>\n<\/tr>\n
379<\/td>\nPart 11, Nonmandatory Appendix B Methods for Comparative Evaluation of Fluidelastic and Turbulence-Induced Vibration
B-1 INTRODUCTION
B-2 NOMENCLATURE
B-3 FLUIDELASTIC INSTABILITY <\/td>\n<\/tr>\n
380<\/td>\nB-4 SIMPLIFIED METHOD FOR ESTIMATING TURBULENCE-INDUCED VIBRATION IN A SIMILAR DESIGN <\/td>\n<\/tr>\n
381<\/td>\nB-5 REFERENCES
Table B-1 Upper Bound Estimate of the Random Turbulence Excitation Coefficient for Tube Bundle <\/td>\n<\/tr>\n
382<\/td>\nPart 11, Nonmandatory Appendix C Test Guidelines for Dynamic Characterization of Tubes
C-1 TUBE MECHANICAL VIBRATION CHARACTERISTICS
C-2 MODAL FREQUENCIES AND DAMPING DETERMINATION
C-3 MODE SHAPE CHARACTERIZATION <\/td>\n<\/tr>\n
383<\/td>\nPart 11, Nonmandatory Appendix D External Vibration Surveys
D-1 INTRODUCTION
D-2 MEASUREMENT LOCATIONS
D-3 ACCEPTANCE GUIDELINES AND RECOMMENDED FOLLOW-UP <\/td>\n<\/tr>\n
384<\/td>\nPart 11, Nonmandatory Appendix E Detection Methods and Data Interpretation
E-1 INTRODUCTION
E-2 AURAL OBSERVATIONS
E-3 ACCELEROMETER SIGNAL CHARACTERISTICS DURING METAL-TO-METAL IMPACTING
E-4 DETECTION OF VIBRATION CAUSED BY FLUIDELASTIC EXCITATION WITH TUBE-MOUNTED SENSORS <\/td>\n<\/tr>\n
385<\/td>\nFig. E-1 Acoustic rms Spectrum for Nonimpacting Tube (No. 6-1) and Impacting Tube (No. 6-2) <\/td>\n<\/tr>\n
386<\/td>\nFig. E-2 Correlation of Signals From Microphone and In-Tube Accelerometer <\/td>\n<\/tr>\n
387<\/td>\nE-4.1 Vibration Amplitude Versus Flow Response Rate
E-4.2 Vibration Amplitude Versus Flow Amplitude Threshold
E-4.3 Time History <\/td>\n<\/tr>\n
388<\/td>\nFig. E-3 Root Mean Square (rms) Tube Response Versus Flow Velocity
Fig. E-4 Response Versus Flow Velocity (Laboratory Test of 5 \u00d7 5 Tube Array) <\/td>\n<\/tr>\n
389<\/td>\nFig. E-5 Response Versus Flow Rate for Four Tubes in Industrial Size Shell-and-Tube Heat Exchanger (Open Symbol: Increasing Flow; Solid Symbol: Decreasing Flow) <\/td>\n<\/tr>\n
390<\/td>\nFig. E-6 Displacement Time Histories From Accelerometer Pair in Heat Exchanger Tube Vibration Test
Fig. E-7 Acceleration Time Histories From Accelerometer Pair in Heat Exchanger Tube Vibration Test <\/td>\n<\/tr>\n
391<\/td>\nE-4.4 Tube Trajectory
E-4.5 Frequency Response Data
E-5 TUBE SUPPORT PLATE INTERACTION <\/td>\n<\/tr>\n
392<\/td>\nFig. E-8 Tube Vibration Patterns From X- Y Probe and Test of Industrial Size Shell-and-Tube Heat Exchanger <\/td>\n<\/tr>\n
393<\/td>\nFig. E-9 Frequency Response Curves for Tubes in Industrial Size Shell-and-Tube Heat Exchanger <\/td>\n<\/tr>\n
394<\/td>\nFig. E-10 Schematic of Test Setup
E-6 REFERENCES <\/td>\n<\/tr>\n
395<\/td>\nFig. E-11 Root Mean Square (rms) Tube Displacements As Function of Flow Velocity (Diametral Gap of 1.02 mm) <\/td>\n<\/tr>\n
396<\/td>\nFig. E-12 Frequency Spectra of Tube Displacement at Location “A” (Diametral Gap of 1.27 mm) <\/td>\n<\/tr>\n
397<\/td>\nFig. E-13 Tube Displacement Time Histories at Location “A” (Diametral Gap of 0.51 mm) <\/td>\n<\/tr>\n
399<\/td>\nPart 11, Nonmandatory Appendix F Vibration Acceptance Guidelines
F-1 INTRODUCTION
F-2 GUIDELINES FOR INITIAL ASSESSMENT
F-3 FOLLOW-UP ACTIONS
F-4 METHODS FOR DETAILED WEAR ASSESSMENTS <\/td>\n<\/tr>\n
400<\/td>\nF-5 GUIDELINES FOR THE EVALUATION OF EXTERNAL VIBRATION LEVELS
F-6 REFERENCES <\/td>\n<\/tr>\n
401<\/td>\nPart 11, Nonmandatory Appendix G Installation of Strain Gages <\/td>\n<\/tr>\n
402<\/td>\nPart 14 Vibration Monitoring of Rotating Equipment in Nuclear Power Plants
1 INTRODUCTION
1.1 Scope
1.2 Purpose
2 DEFINITIONS <\/td>\n<\/tr>\n
403<\/td>\n3 REFERENCES
3.1 Referenced Standards
3.2 Referenced Publications <\/td>\n<\/tr>\n
404<\/td>\nTable 1 Comparison of Periodic and Continuous Monitoring and Relative Advantages
4 VIBRATION MONITORING
4.1 Types of Monitoring
4.2 Quality Considerations <\/td>\n<\/tr>\n
405<\/td>\nTable 2 Transducer Location Guidelines \u2014 Turbines
Table 3 Transducer Location Guidelines \u2014 Equipment With Antifriction Bearings <\/td>\n<\/tr>\n
406<\/td>\nTable 4 Transducer Location Guidelines \u2014 Horizontal Pumps \u2014 Fluid Film Bearings
Table 5 Transducer Location Guidelines \u2014 Motor-Driven Vertical Pumps \u2014 Fluid Film Bearings <\/td>\n<\/tr>\n
407<\/td>\nTable 6 Transducer Location Guidelines \u2014 Electric Motors <\/td>\n<\/tr>\n
408<\/td>\n5 ESTABLISHING THE BASELINE
5.1 Baseline Data
5.2 Methods to Establish Baseline
6 ESTABLISHING VIBRATION LIMITS
6.1 Purpose <\/td>\n<\/tr>\n
409<\/td>\nFig. 1 An Example of a Vibration Data Sheet <\/td>\n<\/tr>\n
410<\/td>\n6.2 Parameters
6.3 Criteria
Fig. 2 An Example of a Vibration Trend Curve <\/td>\n<\/tr>\n
411<\/td>\nFig. 3 Vibration Level Trend Plot of Condition One (For Defined Vibration Limits From Manufacturer’s Data or Equivalent) <\/td>\n<\/tr>\n
412<\/td>\nFig. 4 Vibration Level Trend Plot of Condition Two (For Defined Vibration Limits From Manufacturer’s Data or Equivalent) <\/td>\n<\/tr>\n
413<\/td>\n7 DATA ACQUISITION
8 HARDWARE
9 DIAGNOSTICS
9.1 Purpose
9.2 Troubleshooting <\/td>\n<\/tr>\n
414<\/td>\nTable 7 Vibration Troubleshooting Chart <\/td>\n<\/tr>\n
415<\/td>\nPart 14, Nonmandatory Appendix A Instrumentation Selection and Use
A-1 INSTALLATION OF TRANSDUCERS
A-1.1 Mounting Techniques
A-1.2 Types of Measurement <\/td>\n<\/tr>\n
416<\/td>\nA-2 CALIBRATION
A-3 PRETEST CONDITIONS
A-4 MEASURING AND RECORDING INFORMATION
A-5 SPECIAL CONSIDERATIONS
A-5.1 Natural Frequency
A-5.2 Magnetic\/Electrical Interference
A-5.3 Environment
A-6 PERSONNEL <\/td>\n<\/tr>\n
417<\/td>\nPart 14, Nonmandatory Appendix B Transducers and Analysis Equipment
B-1 TRANSDUCERS
B-1.1 Noncontact Transducer
B-1.2 Velocity Transducers <\/td>\n<\/tr>\n
418<\/td>\nTable B-1 Noncontacting Displacement Probes \u2014 Probe Advantages Versus Disadvantages
Table B-2 Velocity Transducers \u2014 Transducer Advantages Versus Disadvantages <\/td>\n<\/tr>\n
419<\/td>\nTable B-3 Accelerometers \u2014 Transducer Advantages Versus Disadvantages
Table B-4 Combination Probe Attached to Bearing Housing \u2014 Transducer Advantages Versus Disadvantages <\/td>\n<\/tr>\n
420<\/td>\nB-1.3 Acceleration Transducer (Accelerometer)
B-1.4 Combination Transducers
B-1.5 Shaft Rider
Table B-5 Shaft Rider \u2014 Transducer Advantages Versus Disadvantages <\/td>\n<\/tr>\n
421<\/td>\nB-1.6 Shaft Stick
B-1.7 Once Per Turn Phase Angle Reference
B-2 CONTINUOUS VIBRATION MONITORING INSTRUMENTS
B-2.1 Vibration Switch
B-2.2 Nonindicating Monitor
B-2.3 Indicating Monitor
B-2.4 Diagnostic Monitor
B-3 PERIODIC ANALYSIS INSTRUMENTATION
B-3.1 Go\/No Go Meter
B-3.2 Overall Level Meter
B-3.3 Tunable Filter
B-3.4 Oscilloscope
B-3.5 Fast Fourier Transform Analyzer
B-3.6 Portable Integral Memory Data Acquisition and Playback Instrument
B-3.7 Tape Recorders <\/td>\n<\/tr>\n
422<\/td>\nPart 17 Performance Testing of Instrument Air Systems in Light-Water Reactor Power Plants <\/td>\n<\/tr>\n
423<\/td>\nPart 19 Preservice and Periodic Performance Testing of Pneumatically and Hydraulically Operated Valve Assemblies in Light-Water Reactor Power Plants
1 INTRODUCTION
1.1 Scope
1.2 Exclusions
2 DEFINITIONS <\/td>\n<\/tr>\n
424<\/td>\n3 TEST GUIDANCE
3.1 Preservice Test Guidance
3.2 Performance Test Guidance
3.3 Equipment Replacement, Modification, Repair, and Maintenance Test Guidance
4 TEST METHODS
4.1 Prerequisites
4.2 Instrument Calibration
4.3 Test Conditions <\/td>\n<\/tr>\n
425<\/td>\n4.4 Limits and Precautions
4.5 Test Procedures
4.6 Test Parameters
4.7 Test Information
5 ANALYSIS AND EVALUATION OF DATA
5.1 Acceptance Criteria <\/td>\n<\/tr>\n
426<\/td>\n5.2 Analysis of Data
5.3 Evaluation of Data
5.4 Documentation of Analysis and Evaluation of Data
6 CORRECTIVE ACTION <\/td>\n<\/tr>\n
427<\/td>\nPart 23 Inservice Monitoring of Reactor Internals Vibration in Pressurized Water Reactor Power Plants
1 INTRODUCTION
1.1 Scope
1.2 Background
2 DEFINITIONS <\/td>\n<\/tr>\n
428<\/td>\nFig. 1 Schematic of a Pressurized Water Reactor (PWR) Showing Typical Sensor Arrangement <\/td>\n<\/tr>\n
429<\/td>\n3 REFERENCES
4 INTERNALS VIBRATION EXCITATION SOURCES, RESPONSES, AND MODES
4.1 Sources of Excitation and Responses <\/td>\n<\/tr>\n
430<\/td>\n4.2 Vibration Modes
5 SIGNAL DATABASE
5.1 Signals to Be Monitored and Reactor Conditions
5.2 Data Acquisition <\/td>\n<\/tr>\n
431<\/td>\nFig. 2 Beam and Shell Mode Vibration of a PWR Core Support Barrel <\/td>\n<\/tr>\n
432<\/td>\n5.3 Signal Sampling
5.4 Signal Recording
5.5 Data Reduction
Table 1 Sensor Types and Potential Applications in Reactor Noise Analysis <\/td>\n<\/tr>\n
433<\/td>\nFig. 3 Typical Components in a Signal Data Acquisition System
Table 2 Relationships Between Sampling Rates and Analysis Results <\/td>\n<\/tr>\n
434<\/td>\n5.6 Data Storage
5.7 Documentation <\/td>\n<\/tr>\n
435<\/td>\n6 DATA REVIEW
6.1 Initial Data Set
6.2 Subsequent Data Sets <\/td>\n<\/tr>\n
437<\/td>\nPart 23, Nonmandatory Appendix A Discussion of Spectral Functions
A-1 NORMALIZED POWER SPECTRAL DENSITY (NPSD)
A-2 NORMALIZED ROOT MEAN SQUARE OF THE SIGNAL
A-3 NORMALIZED CROSS-POWER SPECTRAL DENSITY (NCPSD), COHERENCE (COH), AND PHASE (N)
A-3.1 Normalized Cross-Power Spectral Density (NCPSD)
A-3.2 Coherence (COH) and Phase (N) <\/td>\n<\/tr>\n
438<\/td>\nFig. A-1 Different Spectral Functions <\/td>\n<\/tr>\n
439<\/td>\nA-4 IN-PHASE AND OUT-OF-PHASE SIGNAL SEPARATION (MAYO, 1977) <\/td>\n<\/tr>\n
440<\/td>\nA-5 REFERENCES <\/td>\n<\/tr>\n
441<\/td>\nPart 23, Nonmandatory Appendix B Supporting Information on Component Vibrations
B-1 IN-CORE DETECTOR THIMBLES
B-1.1 Introduction
B-1.2 Detection of Thimble Vibration Using In-Core Detector Neutron Noise
B-2 BAFFLE JETTING
B-2.1 Introduction
B-2.2 Data Acquisition
B-2.3 Data Diagnosis <\/td>\n<\/tr>\n
442<\/td>\nB-3 FUEL ASSEMBLY VIBRATIONS
B-3.1 Introduction
B-3.2 Data Acquisition
B-3.3 Data Diagnosis
B-4 REFERENCE <\/td>\n<\/tr>\n
443<\/td>\nPart 23, Nonmandatory Appendix C Pump-Induced Vibrations
C-1 INTRODUCTION
C-2 CASE STUDY 1: COOLANT PUMP OPERATION CHARACTERISTICS
C-3 CASE STUDY 2: SPACE-TIME BEATING OF COOLANT PUMPS IN A MULTI-LOOP PWR PLANT <\/td>\n<\/tr>\n
444<\/td>\nC-4 REFERENCES <\/td>\n<\/tr>\n
445<\/td>\nFig. C-1 Reactor Coolant System Arrangement \u2014 Plan View <\/td>\n<\/tr>\n
446<\/td>\nFig. C-2 Data Set I, 180 deg Phase NCPSD, A\u2013D <\/td>\n<\/tr>\n
447<\/td>\nFig. C-3 Data Set II, 180 deg NCPSD, A\u2013D and B\u2013C <\/td>\n<\/tr>\n
448<\/td>\nFig. C-4 180 deg Phase NCPSD, X\u2013Y
Fig. C-5 Lissajous Figure of Ex-Core Neutron Noise Data Showing Motion of Reactor Core in a Multi-Loop Plant <\/td>\n<\/tr>\n
449<\/td>\nPart 23, Nonmandatory Appendix D Sampling Rate and Length of Data Record Requirement to Resolve a Spectral Peak <\/td>\n<\/tr>\n
452<\/td>\nASME OM INTERPRETATIONS (FOR DIVISION 1) <\/td>\n<\/tr>\n
456<\/td>\nOM CODE CASES (FOR DIVISION 1) <\/td>\n<\/tr>\n
458<\/td>\nCode Case OMN-1 <\/td>\n<\/tr>\n
466<\/td>\nCode Case OMN-1, Revision 1 <\/td>\n<\/tr>\n
471<\/td>\nCode Case OMN-3 <\/td>\n<\/tr>\n
481<\/td>\nCode Case OMN-4 <\/td>\n<\/tr>\n
482<\/td>\nCode Case OMN-6 <\/td>\n<\/tr>\n
483<\/td>\nCode Case OMN-7 <\/td>\n<\/tr>\n
484<\/td>\nCode Case OMN-8 <\/td>\n<\/tr>\n
485<\/td>\nCode Case OMN-9 <\/td>\n<\/tr>\n
488<\/td>\nCode Case OMN-10 <\/td>\n<\/tr>\n
493<\/td>\nCode Case OMN-11 <\/td>\n<\/tr>\n
494<\/td>\nCode Case OMN-12 <\/td>\n<\/tr>\n
499<\/td>\nCode Case OMN-13 <\/td>\n<\/tr>\n
501<\/td>\nCode Case OMN-13, Revision 1 <\/td>\n<\/tr>\n
503<\/td>\nCode Case OMN-13, Revision 2 <\/td>\n<\/tr>\n
505<\/td>\nCode Case OMN-15 <\/td>\n<\/tr>\n
508<\/td>\nCode Case OMN-15, Revision 2 <\/td>\n<\/tr>\n
512<\/td>\nCode Case OMN-16 <\/td>\n<\/tr>\n
515<\/td>\nCode Case OMN-16, Revision 1 <\/td>\n<\/tr>\n
518<\/td>\nCode Case OMN-17 <\/td>\n<\/tr>\n
519<\/td>\nCode Case OMN-18 <\/td>\n<\/tr>\n
520<\/td>\nCode Case OMN-19 <\/td>\n<\/tr>\n
521<\/td>\nCode Case OMN-20 <\/td>\n<\/tr>\n
522<\/td>\nCode Case OMN-21 <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

ASME OM – 2015: Operation and Maintenance of Nuclear Power Plants<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
ASME<\/b><\/a><\/td>\n2015<\/td>\n526<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":140906,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2643],"product_tag":[],"class_list":{"0":"post-140904","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-asme","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/140904","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/140906"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=140904"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=140904"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=140904"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}