{"id":214891,"date":"2024-10-19T13:55:50","date_gmt":"2024-10-19T13:55:50","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-1924-22018-tc\/"},"modified":"2024-10-25T06:55:43","modified_gmt":"2024-10-25T06:55:43","slug":"bs-1924-22018-tc","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-1924-22018-tc\/","title":{"rendered":"BS 1924-2:2018 – TC"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
172<\/td>\n | Foreword <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | 1 Scope 2 Normative references <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | 3 Terms, definitions, symbols and abbreviations <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | 4 Classification tests 4.1 General <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | Table 1 \u2014 Classification tests 4.2 Determination of effect of the treating agent on plasticity properties <\/td>\n<\/tr>\n | ||||||
182<\/td>\n | 5 Compaction-related tests 5.1 General Table 2 \u2014 Compaction-related tests 5.2 Determination of the dry density\/water content relation <\/td>\n<\/tr>\n | ||||||
183<\/td>\n | 6 Density tests <\/td>\n<\/tr>\n | ||||||
184<\/td>\n | Figure 1 \u2014 Two methods of transmission with nuclear surface density gauge 6.1 Nuclear gauge method <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | 6.2 Sand replacement method <\/td>\n<\/tr>\n | ||||||
192<\/td>\n | Figure 2 \u2014 Small pouring cylinder for the determination of the density of fine- and medium\u2011grained materials <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | Figure 3 \u2014 Calibrating container for use with the small pouring cylinder <\/td>\n<\/tr>\n | ||||||
194<\/td>\n | Figure 4 \u2014 Large pouring cylinder for the determination of the density of medium- and course\u2011grained materials <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | Figure 5 \u2014 Calibrating container for use with the large pouring cylinder <\/td>\n<\/tr>\n | ||||||
198<\/td>\n | 6.3 Core\u2011cutter method (for unhardened fine\u2011grained materials) <\/td>\n<\/tr>\n | ||||||
199<\/td>\n | Figure 6 \u2014 Core\u2011cutter apparatus for in\u2011situ density determination of fine\u2011grained materials <\/td>\n<\/tr>\n | ||||||
200<\/td>\n | 6.4 Immersion in water method <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | Figure 7 \u2014 Diagrammatic representation of the cradle and supporting frame for determination of density by the immersion\u2011in\u2011water method <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | 6.5 Water displacement method Figure 8 \u2014 Apparatus for the determination of density of treated material by water displacement (fine- and medium-grained materials) <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | Figure 9 \u2014 Apparatus for the determination of density of treated material by water displacement (coarse\u2011grained materials) <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | 7 Laboratory mechanical performance and workability tests 7.1 General <\/td>\n<\/tr>\n | ||||||
211<\/td>\n | Table 3 \u2014 Laboratory mechanical performance and workability tests in accordance with other standards 7.2 Determination of the compressive strength (Rc) of cylindrical specimens <\/td>\n<\/tr>\n | ||||||
212<\/td>\n | 7.3 Determination of the compressive strength (Rc) of cubic specimens <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | 7.4 Determination of the indirect tensile strength (Rit) 7.5 Determination of the modulus of elasticity in compression (Ec) 8 Laboratory durability and coefficient of linear thermal expansion testing 8.1 General <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | Table 4 \u2014 Laboratory durability and coefficient of linear thermal expansion testing 8.2 Determination of the effect of immersion in water on the compressive strength (Rc) <\/td>\n<\/tr>\n | ||||||
215<\/td>\n | 8.3 Determination of the effect of immersion in water on the indirect tensile strength (Rit) 8.4 Determination of coefficient of linear thermal expansion <\/td>\n<\/tr>\n | ||||||
217<\/td>\n | 9 In\u2011situ determination of material stiffness 9.1 General Table 5 \u2014 In situ determination of material stiffness 9.2 Light weight deflectometer <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | Figure 10 \u2014 Light weight deflectometer <\/td>\n<\/tr>\n | ||||||
221<\/td>\n | Figure 11 \u2014 Idealized LWD pulse shapes <\/td>\n<\/tr>\n | ||||||
222<\/td>\n | 9.3 Falling weight deflectometer <\/td>\n<\/tr>\n | ||||||
223<\/td>\n | Figure 12 \u2014 Falling weight deflectometer <\/td>\n<\/tr>\n | ||||||
225<\/td>\n | 10 Chemical tests 10.1 General Table 6 \u2014 Laboratory chemical tests 10.2 Determination of the in-situ pH of lime- or cement-treated materials as a guide to the degree of carbonation <\/td>\n<\/tr>\n | ||||||
227<\/td>\n | 10.3 Determination of the initial consumption of lime <\/td>\n<\/tr>\n | ||||||
232<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Tracked Changes. Hydraulically bound and stabilized materials for civil engineering purposes – Sample preparation and testing of materials during and after treatment<\/b><\/p>\n |