{"id":255085,"date":"2024-10-19T16:51:35","date_gmt":"2024-10-19T16:51:35","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iec-tr-61850-90-42013\/"},"modified":"2024-10-25T12:18:00","modified_gmt":"2024-10-25T12:18:00","slug":"bsi-pd-iec-tr-61850-90-42013","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iec-tr-61850-90-42013\/","title":{"rendered":"BSI PD IEC\/TR 61850-90-4:2013"},"content":{"rendered":"
This part of IEC 61850, which is a Technical Report, is intended for an audience familiar with network communication and\/or IEC 61850-based systems and particularly for substation protection and control equipment vendors, network equipment vendors and system integrators.<\/p>\n
This Technical Report focuses on engineering a local area network limited to the requirements of IEC 61850-based substation automation. It outlines the advantages and disadvantages of different approaches to network topology, redundancy, clock synchronization, etc. so that the network designer can make educated decisions. In addition, this report outlines possible improvements to both substation automation and networking equipment.<\/p>\n
This Technical Report addresses the most critical aspects of IEC 61850, such as protection related to tripping over the network. This Technical Report addresses in particular the multicast data transfer of large volumes of sampled values (SV) from merging units (MUs). It also considers the high precision clock synchronization and \u201cseamless\u201d guaranteed transport of data across the network under failure conditions that is central to the process bus concept.<\/p>\n
This Technical Report is not a tutorial on networking or on IEC 61850. Rather, it references and summarizes standards and publications to assist the engineers. Many publications discuss the Ethernet technology but do not address the networks in terms of substation automation. Therefore, many technologies and options have been ignored, since they were not considered relevant for a future-proof substation automation network design.<\/p>\n
This Technical Report does not address network security.<\/p>\n
This Technical Report does not address substation-to-substation communication, or substation to control centre communication. Inter-substation communication involves WAN technologies other than Ethernet, but when it uses Ethernet on layer 2, parts of this report can be applied. For inter-substation communication which uses exclusively the routable Internet Protocol, more adapted guidelines are in discussion within IEC TC 57, especially in documents IEC\/TR 61850-90-1, IEC 61850-90-21, and IEC\/TR 61850-90-5, which will be addressed in the WAN engineering guidelines, IEC 61850-90-122.<\/p>\n
This Technical Report does not dispense the responsible system integrator from an analysis of the actual application configuration, which is the base for a dependable system.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 1 Scope <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 2 Normative references <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 3 Terms, definitions, abbreviations and conventions 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 3.2 Abbreviations <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 3.3 Conventions 3.3.1 Network diagram symbols <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 3.3.2 Port and link symbols 3.3.3 Bridges symbols Figures Figure 1 \u2013 Network symbols Figure 2 \u2013 Port symbols <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 4 Overview of IEC\u00a061850 networks 4.1 Logical allocation of functions and interfaces Figure 3 \u2013 Bridge symbol as beam Figure 4 \u2013 Bridge symbol as bus <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | Figure 5 \u2013 Levels and logical interfaces in substation automation systems Tables Table 1 \u2013 IEC\u00a061850-5 interface definitions <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 4.2 IEC\u00a061850 protocol stack 4.2.1 General 4.2.2 IEC\u00a061850 traffic classes Figure 6 \u2013 IEC\u00a061850 protocol stack <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 4.2.3 MMS protocol 4.2.4 GOOSE protocol Figure 7 \u2013 MMS protocol time\/distance chart <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Figure 8 \u2013 GOOSE protocol time\/distance chart <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 4.2.5 SV protocol 4.3 Station bus and process bus Figure 9 \u2013 GOOSE protocol time chart Figure 10 \u2013 Example of SV traffic (4 800\u00a0Hz) <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Figure 11 \u2013 Station bus, process bus and traffic example <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 5 Network design checklist 5.1 Design principles 5.2 Engineering flow <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 5.3 Checklist to be observed 5.3.1 Summary Figure 12 \u2013 Example of engineering flow <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 5.3.2 Environmental issues 5.3.3 EMI immunity 5.3.4 Form factor 5.3.5 Physical media 5.3.6 Substation application and network topology <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 5.3.7 Redundancy 5.3.8 Reliability, availability, maintainability 5.3.9 Logical data flows and traffic patterns 5.3.10 Latency for different types of traffic 5.3.11 Performance <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 5.3.12 Network management 5.3.13 Network supervision 5.3.14 Time synchronization and accuracy 5.3.15 Remote connectivity 5.3.16 Cyber security <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 5.3.17 Scalability, upgradeability and future-proof 5.3.18 Testing 5.3.19 Cost 6 Ethernet technology for substations 6.1 Ethernet subset for substation automation 6.2 Topology <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | Figure 13 \u2013 Ethernet local area network (with redundant links) Figure 14 \u2013 Switch with copper (RJ45) ports) <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 6.3 Physical layer 6.3.1 Data rate and medium 6.3.2 Full-duplex communication and auto-negotiation 6.3.3 Copper cabling at 100\u00a0Mbit\/s <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 6.3.4 Optical cabling at 100 Mbit\/s (100BASE-FX) Figure 15 \u2013 RJ45 connector <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Figure 16 \u2013 LC connector <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 6.3.5 Optical cabling at 1\u00a0Gbit\/s (1000BASE-LX) 6.3.6 Copper cabling at 1\u00a0Gbit\/s 6.4 Link layer 6.4.1 Unicast and multicast MAC addresses Figure 17 \u2013 Switch with optical fibres (LC connectors) <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 6.4.2 Link layer and bridges 6.4.3 Bridging nodes 6.4.4 Loop prevention and RSTP <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Figure 18 \u2013 RSTP principle <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 6.4.5 Traffic control in the bridges 6.4.6 Unicast MAC address filtering 6.4.7 Multicast MAC address filtering <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 6.4.8 Virtual LANs (VLANS) traffic control <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Figure 19 \u2013 IEEE 802.3 frame format without and with VLAN tagging <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | Table 2 \u2013 Example of port ingress setting table <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | Table 3 \u2013 Example of port egress settings <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 6.4.9 Comparison VLAN versus multicast filtering 6.4.10 Layer 2 redundancy protocols Table 4 \u2013 Advantages and drawbacks of VLAN versus multicast filtering <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | Figure 20 \u2013 PRP principle <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | Figure 21 \u2013 HSR principle <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 6.5 Network layer 6.5.1 Internet protocol 6.5.2 IP public and private addresses Figure 22 \u2013 HSR and PRP coupling (multicast) <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 6.5.3 Subnet masks Table 5 \u2013 IANA private IP address blocks (copied from RFC\u00a01918) Table 6 \u2013 IP address and mask example <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 6.5.4 Network address translation 7 Network and substation topologies 7.1 General rule <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | 7.2 Reference topologies and network redundancy Figure 23 \u2013 Mapping of electrical grid to data network topology <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | Table 7 \u2013 Summary of reference topologies <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | Table 8 \u2013 Reference topologies and redundancy protocols used <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | 7.3 Reference topologies 7.3.1 Station bus topologies Figure 24 \u2013 Station bus as single bridge Table 9 \u2013 Station bus as single bridge <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | Figure 25 \u2013 Station bus as hierarchical star Table 10 \u2013 Station bus as hierarchical star <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Figure 26 \u2013 Station bus as dual star with PRP Table 11 \u2013 Station bus as dual star <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | Figure 27 \u2013 Station bus as ring of RSTP bridges Table 12 \u2013 Station bus as ring <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | Figure 28 \u2013 Station bus as separated Main\u00a01 (Bus\u00a01) and Main\u00a02 (Bus\u00a02) LANs <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | Table 13 \u2013 Station bus as separated Main 1 and Main 2 protection <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Figure 29 \u2013 Station bus as ring of HSR bridging nodes Table 14 \u2013 Station bus as ring of bridging nodes <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | Figure 30 \u2013 Station bus as ring and subrings with RSTP Table 15 \u2013 Station bus as ring and subrings <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | Figure 31 \u2013 Station bus as parallel rings with bridging nodes <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Figure 32 \u2013 Station bus as parallel HSR rings Table 16 \u2013 Station bus as parallel rings <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | Figure 33 \u2013 Station bus as hierarchical rings with RSTP bridging nodes Table 17 \u2013 Station bus as parallel HSR rings <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | Table 18 \u2013 Station bus as ring of rings with RSTP <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Figure 34 \u2013 Station bus as hierarchical rings with HSR bridging nodes Table 19 \u2013 Station bus as ring of rings with HSR <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | 7.3.2 Process bus and attachment of primary equipment Figure 35 \u2013 Station bus as ring and subrings with HSR Table 20 \u2013 Station bus as ring and subrings with HSR <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | Figure 36 \u2013 Double busbar bay with directly attached sensors <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | Figure 37 \u2013 Double busbar bay with SAMUs and process bus <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Figure 38 \u2013 Double busbar bay with ECT\/EVTs and process bus <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Figure 39 \u2013 1 \u00bd CB diameter with conventional, non-redundant attachment <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | Figure 40 \u2013 1 \u00bd CB diameter with SAMUs and process bus <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | Figure 41 \u2013 1 \u00bd CB diameter with ECT\/EVT and process bus <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | Figure 42 \u2013 Process bus as connection of PIA and PIB (non-redundant protection) Table 21 \u2013 Process bus as connection of PIA and PIB <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | Figure 43 \u2013 Process bus as single star (not redundant protection) <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | Table 22 \u2013 Process bus as single star <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | Figure 44 \u2013 Process bus as dual star Table 23 \u2013 Process bus as dual star <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | Figure 45 \u2013 Process bus as a single bridge (no protection redundancy) <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | Table 24 \u2013 Process bus as single bridge <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | Figure 46 \u2013 Process bus as separated LANs for main 1 and main 2 Table 25 \u2013 Process bus as separated LANs <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | Figure 47 \u2013 Process bus as ring of HSR nodes Table 26 \u2013 Process bus as simple ring <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | 7.3.3 Station bus and process bus connection Table 27 \u2013 Advantages and drawbacks of physical separation Table 28 \u2013 Advantages and drawbacks of logical separation <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | Figure 48 \u2013 Process bus as star to merging units and station bus as RSTP ring Table 29 \u2013 Process bus as star to merging units <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | Figure 49 \u2013 Station bus and process bus as rings connected by a router Table 30 \u2013 Connection of station bus to process bus by routers <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Figure 50 \u2013 Station bus ring and process bus ring with HSR <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | Table 31 \u2013 Connection of station bus to process bus by RedBoxes <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | 8 Addressing in the substation 8.1 Network IP address plan for substations 8.1.1 General structure Figure 51 \u2013 Station bus as dual PRP ring and process bus as HSR ring Table 32 \u2013 Connection of duplicated station bus to process bus by RedBoxes <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | 8.1.2 IP address allocation of NET Table 33 \u2013 Example IP address allocation of NET <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | 8.1.3 IP address allocation of BAY 8.1.4 IP address allocation of device Table 34 \u2013 Example IP address allocation of BAY Table 35 \u2013 Example IP address allocation of device <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | 8.1.5 IP address allocation of devices with PRP 8.2 Routers and GOOSE \/ SV traffic 8.3 Communication outside the substation Table 36 \u2013 Example IP address allocation of switches in PRP <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | 9 Application parameters 9.1 MMS parameters 9.2 GOOSE parameters 9.3 SV parameters <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | 10 Performance 10.1 Station bus performance 10.1.1 Logical data flows and traffic patterns Table 37 \u2013 IEC\u00a061850-5 interface traffic <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | 10.1.2 GOOSE traffic estimation 10.1.3 MMS traffic estimation Table 38 \u2013 Message types and addresses <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | 10.1.4 station bus measurements Figure 52 \u2013 Station bus used for the measurements Figure 53 \u2013 Typical traffic (packet\/s) on the station bus <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | 10.2 Process bus performance 11 Latency 11.1 Application requirements <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | 11.2 Latency requirements for different types of traffic 11.2.1 Latency requirements in IEC\u00a061850-5 11.2.2 Latencies of physical paths 11.2.3 Latencies of bridges Table 39 \u2013 Transfer time requirements of IEC\u00a061850-5 Table 40 \u2013 Elapsed time for an IEEE 802.3 frame to traverse the physical medium <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | 11.2.4 Latency and hop counts 11.2.5 Network latency budget Table 41 \u2013 Delay for an IEEE 802.3 frame to ingress or to egress a port <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | 11.2.6 Example of traffic delays 11.2.7 Engineering a network for IEC\u00a061850 protection Table 42 \u2013 Latencies caused by waiting for a lower-priority frame to egress a port <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | 12 Network traffic control 12.1 Factors that affect performance 12.1.1 Influencing factors 12.1.2 Traffic reduction Figure 54 \u2013 Generic multicast domains <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | 12.1.3 Example of traffic reduction scheme <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | 12.1.4 Multicast domains in a combined station bus and process bus network Figure 55 \u2013 Traffic patterns <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | 12.2 Traffic control by VLANs 12.2.1 Trunk traffic reduction by VLANs Figure 56 \u2013 Multicast domains for a combined process bus and station bus <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | 12.2.2 VLAN usage 12.2.3 VLAN handling at the IEDs 12.2.4 Example of correct VLAN configuration <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | 12.2.5 Example of incorrect VLAN configuration Figure 57 \u2013 Bridges with correct VLAN configuration <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | Figure 58 \u2013 Bridges with poor VLAN configuration <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | 12.2.6 Retaining priority throughout the network 12.2.7 Traffic filtering with VLANs <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | 12.3 Traffic control by multicast filtering 12.3.1 Trunk traffic reduction by multicast filtering Figure 59 \u2013 Bridges with traffic segmentation through VLAN configuration <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | 12.3.2 Multicast\/VLAN management and redundancy protocol reconfiguration 12.3.3 Physical topologies and multicast management implications Figure 60 \u2013 Station bus separated into multicast domains by voltage level <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | Figure 61 \u2013 Multicast traffic on an RSTP ring <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | Figure 62 \u2013 RSTP station bus and HSR ring Figure 63 \u2013 RSTP station bus and HSR process bus <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | 12.4 Configuration support from tools and SCD files 13 Dependability 13.1 Resiliency requirements <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | 13.2 Availability and reliability requirements 13.3 Recovery time requirements 13.4 Maintainability requirements <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | 13.5 Dependability calculations 13.6 Risk analysis attached to “unwanted events” <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | 14 Time services 14.1 Clock synchronization and accuracy requirements 14.2 Global time sources Table 43 \u2013 Synchronization classes of IEC\u00a061850-5 <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | 14.3 Time scales and leap seconds <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | 14.4 Epoch 14.5 Time scales in IEC\u00a061850 <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | 14.6 Synchronization mechanisms in IEC\u00a061850 14.6.1 Clock synchronization protocols Table 44 \u2013 Time representations <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | Figure 64 \u2013 Clock synchronization channels <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | 14.6.2 1\u00a0PPS 14.6.3 IRIG-B 14.6.4 NTP\/SNTP clock synchronization for IEC\u00a061850-8-1 (station bus) Figure 65 \u2013 1 PPS synchronisation <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | Figure 66 \u2013 SNTP clock synchronization and delay measurement <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | 14.6.5 PTP (IEC\u00a061588) synchronization <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | Figure 67 \u2013 PTP elements <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | Figure 68 \u2013 PTP one-step clock synchronization and delay measurement <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | Figure 69 \u2013 PTP two-step clock synchronization and delay measurement <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | 14.6.6 PTP clock synchronization and IEC\u00a062439-3:2012 <\/td>\n<\/tr>\n | ||||||
141<\/td>\n | Figure 70 \u2013 Clocks in a PRP network coupled by BCs with an HSR ring <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | 14.6.7 IEEE\u00a0C37.238-2011 Power profile <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | 14.7 PTP network engineering 14.7.1 PTP reference clock location Figure 71 \u2013 C37.238-specific TLV <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | 14.7.2 PTP connection of station bus and process bus Figure 72 \u2013 Hierarchy of clocks <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | 14.7.3 Merging units synchronization 15 Network security 16 Network management 16.1 Protocols for network management <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | 16.2 Network management tool 16.3 Network diagnostic tool <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | 17 Remote connectivity 18 Network testing 18.1 Introduction to testing Figure 73 \u2013 Quality assurance stages (copied from IEC\u00a061850-4) <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | 18.2 Environmental type testing 18.3 Conformance testing 18.3.1 Protocols subject to conformance testing Table 45 \u2013 Standards applicable to network elements Table 45 \u2013 Standards applicable to network elements <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | 18.3.2 Integrator acceptance and verification testing 18.3.3 Simple verification test set-up Figure 74 \u2013 Test set-up for verification test <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | 18.3.4 Simple VLAN handling test 18.3.5 Simple priority tagging test <\/td>\n<\/tr>\n | ||||||
151<\/td>\n | 18.3.6 Simple multicast handling test 18.3.7 Simple RSTP recovery test <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | 18.3.8 Simple HSR test 18.3.9 Simple PRP test 18.3.10 Simple PTP test 18.4 Factory and site acceptance testing <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | 19 IEC\u00a061850 bridge and port object model 19.1 Purpose <\/td>\n<\/tr>\n | ||||||
154<\/td>\n | 19.2 Bridge model 19.2.1 Simple model <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | Figure 75 \u2013 Multiport device model <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | 19.2.2 Bridge Logical Node linking 19.3 Clock model 19.3.1 IEC\u00a061588 datasets Figure 76 \u2013 Linking of bridge objects <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | 19.3.2 Clock objects 19.3.3 Simple clock model <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | 19.3.4 Linking of clock objects Figure 77 \u2013 Clock model <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | 19.4 Autogenerated IEC\u00a061850 objects 19.4.1 General 19.4.2 Abbreviated terms used in data object names Figure 78 \u2013 Linking of clock objects Table 46 \u2013 Normative abbreviations for data object names <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | 19.4.3 Logical nodes Figure 79 \u2013 Class diagram LogicalNodes_90_4::LogicalNodes_90_4 <\/td>\n<\/tr>\n | ||||||
161<\/td>\n | Figure 80 \u2013 Class diagram LNGroupL::LNGroupLExt <\/td>\n<\/tr>\n | ||||||
162<\/td>\n | Figure 81 \u2013 Class diagram LNGroupL::LNGroupLNew <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | Table 47 \u2013 Data objects of LNGroupL::LPHDExt <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | Table 48 \u2013 Data objects of LNGroupL::LBRI <\/td>\n<\/tr>\n | ||||||
165<\/td>\n | Figure 82 \u2013 Usage of VLAN filtering Table 49 \u2013 Data objects of LNGroupL::LCCF <\/td>\n<\/tr>\n | ||||||
166<\/td>\n | Table 50 \u2013 Data objects of LNGroupL::LCCHExt <\/td>\n<\/tr>\n | ||||||
167<\/td>\n | Table 51 \u2013 Data objects of LNGroupL::PortBindingLN Table 52 \u2013 Data objects of LNGroupL::LPCP <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | Table 53 \u2013 Data objects of LNGroupL::LPLD <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | Table 54 \u2013 Data objects of LNGroupL::LBSP Table 55 \u2013 Data objects of LNGroupL::LTIMExt <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | Figure 83 \u2013 Usage of clock references <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | Table 56 \u2013 Data objects of LNGroupL::LTMSExt Table 57 \u2013 Data objects of LNGroupL::LTPC <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | 19.4.4 Data semantics Table 58 \u2013 Data objects of LNGroupL::LTPP Table 59 \u2013 Attributes defined on classes of LogicalNodes_90_4 package <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | 19.4.5 Enumerated data attribute types Table 60 \u2013 Literals of DOEnums_90_4::ChannelRedundancyKind <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | Figure 84 \u2013 Class diagram DetailedDiagram::DOEnums_90_4 Table 61 \u2013 Literals of DOEnums_90_4::LeapSecondKind Table 62 \u2013 Literals of DOEnums_90_4::RstpStateKind <\/td>\n<\/tr>\n | ||||||
178<\/td>\n | 19.4.6 SCL enumerations 19.4.7 Common data class specifications Figure 85 \u2013 Class diagram CommonDataClasses_90_4::CommonDataClasses_90_4 <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | Figure 86 \u2013 Class diagram CDCStatusInfo::CDCStatusInfo Table 63 \u2013 Clock grandmaster status common data class definition <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | Table 64 \u2013 Clock port status common data class definition <\/td>\n<\/tr>\n | ||||||
182<\/td>\n | Figure 87 \u2013 Class diagram CDCStatusSet::CDCStatusSet Table 65 \u2013 Clock ordinary settings common data class definition <\/td>\n<\/tr>\n | ||||||
184<\/td>\n | 19.4.8 Enumerated types Table 66 \u2013 VLAN filters common data class definition Table 67 \u2013 Literals of DAEnums_90_4::VlanTagKind <\/td>\n<\/tr>\n | ||||||
185<\/td>\n | 19.4.9 SCL enumerations 19.5 Mapping of bridge objects to SNMP 19.5.1 Mapping of LLN0 and LPHD attributes to SNMP Table 68 \u2013 Mapping of LLN0 and LPHD attributes to SNMP <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | 19.5.2 Mapping of LBRI attributes to SNMP for bridges 19.5.3 Mapping of LPCP attributes to SNMP for bridges 19.5.4 Mapping of LPLD attributes to SNMP for bridges Table 69 \u2013 Mapping of LBRI and LBSP attributes to SNMP for bridges Table 70 \u2013 Mapping of LPCP attributes to SNMP for bridges <\/td>\n<\/tr>\n | ||||||
187<\/td>\n | 19.5.5 Mapping of HSR\/PRP link redundancy entity to SNMP Table 71 \u2013 Mapping of LPLD attributes to SNMP for bridges <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | 19.6 Mapping of clock objects to the C37.238 SNMP MIB Table 72 \u2013 Mapping of LCCH attributes for SNMP for HSR\/PRP LREs Table 73 \u2013 Mapping of clock objects in IEC\u00a061850, IEC\u00a061588 and IEEE\u00a0C37.238 <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | 19.7 Machine-readable description of the bridge objects 19.7.1 Method and examples 19.7.2 Four-port bridge Figure 88 \u2013 Four-port bridge <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | 19.7.3 Simple IED with PTP Figure 89 \u2013 Simple IED with PTP but no LLDP support <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | 19.7.4 RedBox wit HSR <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | Figure 90 \u2013 RedBox with LLDP but no PTP <\/td>\n<\/tr>\n | ||||||
216<\/td>\n | Annex A (informative) Case study \u2013 Process bus configuration for busbar protection system <\/td>\n<\/tr>\n | ||||||
217<\/td>\n | Figure A.1 \u2013 Preconditions for the process bus configuration example Table A.1 \u2013 Summary of expected latencies <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | Annex B (informative) Case study \u2013 Simple Topologies (Transener\/Transba, Argentina) Figure B.1 \u2013 First Ethernet-based Transba substation automation network <\/td>\n<\/tr>\n | ||||||
221<\/td>\n | Figure B.2 \u2013 Transba SAS architecture <\/td>\n<\/tr>\n | ||||||
222<\/td>\n | Figure B.3 \u2013 Transener substation automation network <\/td>\n<\/tr>\n | ||||||
224<\/td>\n | Figure B.4 \u2013 Transener SAS architecture \u2013 ET Esperanza <\/td>\n<\/tr>\n | ||||||
225<\/td>\n | Figure B.5 \u2013 Transener 500 kV architecture \u2013 El Morej\u00f3n <\/td>\n<\/tr>\n | ||||||
226<\/td>\n | Figure B.6 \u2013 500\u00a0kV kiosk topology <\/td>\n<\/tr>\n | ||||||
227<\/td>\n | Figure B.7 \u2013 33 kV kiosk topology <\/td>\n<\/tr>\n | ||||||
228<\/td>\n | Annex C (informative) Case study \u2013 An IEC 61850 station bus \n(Powerlink, Australia) Figure C.1 \u2013 Example HV and LV single line diagram and IEDs <\/td>\n<\/tr>\n | ||||||
229<\/td>\n | Table C.1 \u2013 Site categories HV Table C.2 \u2013 Site categories MV <\/td>\n<\/tr>\n | ||||||
230<\/td>\n | Figure C.2 \u2013 HV bay and cabinet module Table C.3 \u2013 Building modules <\/td>\n<\/tr>\n | ||||||
234<\/td>\n | Figure C.3 \u2013 Data network areas <\/td>\n<\/tr>\n | ||||||
235<\/td>\n | Table C.4 \u2013 Network modules <\/td>\n<\/tr>\n | ||||||
236<\/td>\n | Figure C.4 \u2013 Substation LAN topology <\/td>\n<\/tr>\n | ||||||
237<\/td>\n | Figure C.5 \u2013 SAS Gen1 High level traffic flows <\/td>\n<\/tr>\n | ||||||
238<\/td>\n | Figure C.6 \u2013 SCADA & gateway connection Figure C.7 \u2013 Station Core <\/td>\n<\/tr>\n | ||||||
240<\/td>\n | Figure C.8 \u2013 Overall VLANs Figure C.9 \u2013 Three domains <\/td>\n<\/tr>\n | ||||||
241<\/td>\n | Figure C.10 \u2013 One domain per diameter, bus zone and transformer protection Table C.5 \u2013 Domain assignment for three domains Table C.6 \u2013 Domain assignment for one domain per diameter <\/td>\n<\/tr>\n | ||||||
243<\/td>\n | Table C.7 \u2013 Summary of expected latencies Table C.8 \u2013 Traffic types and estimated network load <\/td>\n<\/tr>\n | ||||||
244<\/td>\n | Annex D (informative) Case study \u2013 Station bus with VLANs \n(Trans-Africa, South Africa) <\/td>\n<\/tr>\n | ||||||
247<\/td>\n | Figure D.1 \u2013 Conceptual topology of substationLAN network with redundancy <\/td>\n<\/tr>\n | ||||||
248<\/td>\n | Figure D.2 \u2013 Detailed topology of substation LAN with redundancy <\/td>\n<\/tr>\n | ||||||
249<\/td>\n | Table D.1 \u2013 VLAN numbering and allocation <\/td>\n<\/tr>\n | ||||||
250<\/td>\n | Table D.2 \u2013 Prioritization selection for various applications <\/td>\n<\/tr>\n | ||||||
251<\/td>\n | Figure D.3 \u2013 Original IPv4 Type of Service (ToS) octet Figure D.4 \u2013 Differentiated Services (DiffServ) codepoint field Table D.3 \u2013 Mapping of applications to service levels <\/td>\n<\/tr>\n | ||||||
252<\/td>\n | Table D.4 \u2013 List of DiffServ codepoint field values Table D.5 \u2013 Example of DSCP to class of service mapping <\/td>\n<\/tr>\n | ||||||
253<\/td>\n | Table D.6 \u2013 Example of DSCP mappings Table D.7 \u2013 Typical substation IP Address map (IP range: 10.0.16.0\/21) <\/td>\n<\/tr>\n | ||||||
255<\/td>\n | Table D.8 \u2013 SNMP MIBs applicable to substation devices <\/td>\n<\/tr>\n | ||||||
257<\/td>\n | Table D.9 \u2013 Example of device naming Table D.10 \u2013 Example of interface addressing and allocation <\/td>\n<\/tr>\n | ||||||
258<\/td>\n | Table D.11 \u2013 Example of device access and SNMP assignment <\/td>\n<\/tr>\n | ||||||
259<\/td>\n | Table D.12 \u2013 Example of hardware identification Table D.13 \u2013 Example of device name table Table D.14 \u2013 Example of firmware and software table <\/td>\n<\/tr>\n | ||||||
260<\/td>\n | Table D.15 \u2013 Example of interface addressing and allocation Table D.16 \u2013 Example of network switch details <\/td>\n<\/tr>\n | ||||||
261<\/td>\n | Table D.17 \u2013 Example of VLAN definitions Table D.18 \u2013 Example of IP routing Table D.19 \u2013 Example of QoS mapping <\/td>\n<\/tr>\n | ||||||
262<\/td>\n | Table D.20 \u2013 Example of trunk and link aggregation table (void) Table D.21 \u2013 LAN switch port speed and duplex configuration <\/td>\n<\/tr>\n | ||||||
263<\/td>\n | Table D.22 \u2013 LAN switch port security settings <\/td>\n<\/tr>\n | ||||||
264<\/td>\n | Table D.23 \u2013 Example of DHCP snooping Table D.24 \u2013 Example of storm control table <\/td>\n<\/tr>\n | ||||||
265<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Communication networks and systems for power utility automation – Network engineering guidelines<\/b><\/p>\n |