{"id":255561,"date":"2024-10-19T16:53:41","date_gmt":"2024-10-19T16:53:41","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-iec-61400-27-12020\/"},"modified":"2024-10-25T12:21:36","modified_gmt":"2024-10-25T12:21:36","slug":"bs-en-iec-61400-27-12020","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-iec-61400-27-12020\/","title":{"rendered":"BS EN IEC 61400-27-1:2020"},"content":{"rendered":"
IEC 61400-27-1:2020 defines standard electrical simulation models for wind turbines and wind power plants. The specified models are time domain positive sequence simulation models, intended to be used in power system and grid stability analyses. The models are applicable for dynamic simulations of short term stability in power systems. This document defines the generic terms and parameters for the electrical simulation models. This document specifies electrical simulation models for the generic wind power plant topologies \/ configurations currently on the market. The wind power plant models include wind turbines, wind power plant control and auxiliary equipment. The wind power plant models are described in a modular way which can be applied for future wind power plant concepts and with different wind turbine concepts.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Annex ZA(normative)Normative references to international publicationswith their corresponding European publications <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | INTRODUCTION Figures Figure 1 \u2013 Classification of power system stability according to IEEE\/CIGRE Joint Task Force on Stability Terms and Definitions [11] <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 1 Scope 2 Normative references 3 Terms, definitions, abbreviations and subscripts 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 3.2 Abbreviations and subscripts 3.2.1 Abbreviations <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 3.2.2 Subscripts <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 4 Symbols and units 4.1 General 4.2 Symbols (units) <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 5 Functional specification of models 5.1 General specifications <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 5.2 Wind turbine models <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 5.3 Wind power plant models 6 Formal specification of modular structures of models 6.1 General <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 6.2 Wind turbine models 6.2.1 General 6.2.2 Type 1 Figure 2 \u2013 Generic structure of WT models <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Figure 3 \u2013 Modular structure of the type 1A WT model Tables Table 1 \u2013 Modules used in type 1A model <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 6.2.3 Type 2 Figure 4 \u2013 Modular structure of the type 1B WT model Table 2 \u2013 Modules used in type 1B model <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | Figure 5 \u2013 Modular structure of the type 2 WT model Table 3 \u2013 Modules used in type 2 model <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 6.2.4 Type 3 Figure 6 \u2013 Modular structure of the type 3A and type 3B WT models <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | Figure 7 \u2013 Modular generator control sub-structure of the type 3A and type 3B models Table 4 \u2013 Modules used in type 3A model <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 6.2.5 Type 4 Table 5 \u2013 Modules used in type 3B model <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | Figure 8 \u2013 Modular structure of the type 4A WT model <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Figure 9 \u2013 Modular generator control sub-structure of the type 4A model Table 6 \u2013 Modules used in type 4A model <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | Figure 10 \u2013 Modular structure of the type 4B WT model <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Figure 11 \u2013 Modular generator control sub-structure of the type 4B model Table 7 \u2013 Modules used in type 4B model <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 6.3 Auxiliary equipment models 6.3.1 STATCOM Figure 12 \u2013 Modular structure of STATCOM model Figure 13 \u2013 Modular structure of the STATCOM control model <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 6.3.2 Other auxiliary equipment 6.4 Wind power plant models 6.4.1 General Figure 14 \u2013 General structure of WP model Table 8 \u2013 Modules used in STATCOM model <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 6.4.2 Wind power plant control and communication Figure 15 \u2013 General modular structure of WP control and communication block <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 6.4.3 Basic wind power plant Figure 16 \u2013 Single line diagram for basic WP model Table 9 \u2013 Modules used in WP control and communication model <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 6.4.4 Wind power plant with reactive power compensation Figure 17 \u2013 Single line diagram for WP model with reactive power compensation Table 10 \u2013 Models and additional modules used in the basic WP model <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 7 Formal specification of modules 7.1 General Table 11 \u2013 Models and modules used in the WP modelwith reactive power compensation Table 12 \u2013 Global model parameters <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 7.2 Aerodynamic modules 7.2.1 Constant aerodynamic torque module Table 13 \u2013 Initialisation variable used in module block diagrams <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 7.2.2 One-dimensional aerodynamic module 7.2.3 Two-dimensional aerodynamic module Figure 18 \u2013 Block diagram for constant aerodynamic torque module Figure 19 \u2013 Block diagram for one-dimensional aerodynamic module Table 14 \u2013 Parameter list for one-dimensional aerodynamic module <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Figure 20 \u2013 Block diagram for two-dimensional aerodynamic module Table 15 \u2013 Parameter list for two-dimensional aerodynamic module <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 7.3 Mechanical modules 7.3.1 Two mass module 7.3.2 Other mechanical modules 7.4 Generator and converter system modules 7.4.1 Asynchronous generator module Figure 21 \u2013 Block diagram for two mass module Table 16 \u2013 Parameter list for two-mass module <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 7.4.2 Type 3A generator system module Figure 22 \u2013 Block diagram for type 3A generator system module Table 17 \u2013 Parameter list for type 3A generator system module <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 7.4.3 Type 3B generator system module Table 18 \u2013 Parameter list for type 3B generator system module <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 7.4.4 Type 4 generator system module Figure 23 \u2013 Block diagram for type 3B generator system module <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 7.4.5 Reference frame rotation module Figure 24 \u2013 Block diagram for type 4 generator system module Table 19 \u2013 Parameter list for type 4 generator system module Table 20 \u2013 Parameter list for reference frame rotation module <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 7.5 Electrical systems modules 7.5.1 Electrical systems gamma module Figure 25 \u2013 Block diagram for the reference frame rotation module Table 21 \u2013 Parameter list for electrical systems gamma module <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 7.5.2 Other electrical systems modules 7.6 Pitch control modules 7.6.1 Pitch control power module Figure 26 \u2013 Single line diagram for electrical systems gamma module Table 22 \u2013 Parameter list for pitch control power module <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 7.6.2 Pitch angle control module Figure 27 \u2013 Block diagram for pitch control power module Table 23 \u2013 Parameter list for pitch angle control module <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 7.7 Generator and converter control modules 7.7.1 Rotor resistance control module Figure 28 \u2013 Block diagram for pitch angle control module Table 24 \u2013 Parameter list for rotor resistance control module <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 7.7.2 P control module type 3 Figure 29 \u2013 Block diagram for rotor resistance control module Table 25 \u2013 Parameter list for P control module type 3 <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | Figure 30 \u2013 Block diagram for type 3 P control module <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | 7.7.3 P control module type 4A Figure 31 \u2013 Block diagram for type 3 torque PI Table 26 \u2013 Parameter list for P control module type 4A <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 7.7.4 P control module type 4B Figure 32 \u2013 Block diagram for type 4A P control module Table 27 \u2013 Parameter list for P control module type 4B <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 7.7.5 Q control module Figure 33 \u2013 Block diagram for type 4B P control module Table 28 \u2013 General WT Q control modes MqG Table 29 \u2013 Reactive current injection for each FRT Q control modes MqFRT <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | Table 30 \u2013 Parameter list for Q control module <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | Figure 34 \u2013 Block diagram for Q control module <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | 7.7.6 Current limitation module Table 31 \u2013 Description of FFRT flag values Table 32 \u2013 Parameter list for current limiter module <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 7.7.7 Constant Q limitation module Figure 35 \u2013 Block diagram for current limiter Table 33 \u2013 Parameter list for constant Q limitation module <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | 7.7.8 QP and QU limitation module Figure 36 \u2013 Block diagram for constant Q limitation module Figure 37 \u2013 Block diagram for QP and QU limitation module Table 34 \u2013 Parameter list for QP and QU limitation module <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | 7.8 Grid interfacing modules 7.8.1 Grid protection module Table 35 \u2013 Parameter list for grid protection module <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | 7.8.2 Grid measurement module Figure 38 \u2013 Block diagram for grid protection system Table 36 \u2013 Parameter list for grid measurement module <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | 7.9 Wind power plant control modules 7.9.1 WP P control module Figure 39 \u2013 Block diagram for u-f measurement Table 37 \u2013 Parameter list for power\/frequency control module <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | 7.9.2 WP Q control module Figure 40 \u2013 Block diagram for WP power\/frequency control module Table 38 \u2013 Parameter list for reactive power\/voltage control module <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Figure 41 \u2013 Block diagram for WP reactive power\/voltage control module <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | 7.10 Communication modules 7.10.1 General 7.10.2 Communication delay module 7.10.3 Linear communication module Figure 42 \u2013 Block diagram for communication delay module Table 39 \u2013 Parameter list for communication delay module Table 40 \u2013 Parameter list for linear communication module <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | 7.11 Electrical components modules 7.11.1 Line module 7.11.2 Transformer module 7.11.3 Other electrical components modules Figure 43 \u2013 Block diagram for linear communication modulefor an example with N communication variables <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Annex A (informative)Estimation of parameters for single branchpower collection system model A.1 General A.2 Description of method A.2.1 General A.2.2 Lines aggregation <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | A.2.3 Wind turbine transformers aggregation <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | A.3 Numerical example Figure A.1 \u2013 WP power collection system example <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | Table A.1 \u2013 Lines parameters and aggregation calculations.The data is in per-units using WP base values Table A.2 \u2013 Transformers parameters <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Table A.3 \u2013 Estimated parameters for the single branch collection system model in 6.4.3 <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Annex B (informative)Two-dimensional aerodynamic model B.1 Objective B.2 Wind speed input model Figure B.1 \u2013 Turbine aerodynamics model proposed by Fortmann (2014) <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | Table B.1 \u2013 Lookup table specifying the function \u2202p\u03c9(\u03bd0) Table B.2 \u2013 Parameter list for the wind speed input model <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | B.3 Parameters for power input module <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | Annex C (informative)Implementation of generator systems modules with external impedance Figure C.1 \u2013 Type 3A generator system module with parallel reactance <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | Figure C.2 \u2013 Type 3B generator system module with parallel reactance <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | Figure C.3 \u2013 Type 4 generator system module with parallel reactance <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | Annex D (normative)Block symbol library D.1 General D.2 Switch D.3 Time step delay Figure D.1 \u2013 Block symbol for switch with a) a variable flag input and b) a constant mode Figure D.2 \u2013 Block symbol for single integration time step delay <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | D.4 Stand-alone ramp rate limiter D.5 First order filter Figure D.3 \u2013 Block symbol for stand-alone ramp rate limiter Figure D.4 \u2013 Block diagram for implementation of the stand-alone ramp rate limiter Figure D.5 \u2013 Block symbol for first order filter with absolute limits,rate limits and freeze flag <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | D.6 Lookup table D.7 Comparator Figure D.6 \u2013 Block diagram for implementation of the first order filterwith absolute limits, rate limits and freeze state Figure D.7 \u2013 Block diagram for implementation of the freeze state without filter (T = 0) Figure D.8 \u2013 Block symbol for lookup table <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | D.8 Timer Figure D.9 \u2013 Block symbols for comparators Figure D.10 \u2013 Block symbol for timer Figure D.11 \u2013 Function of timer <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | D.9 Anti windup integrator D.10 Integrator with reset Figure D.12 \u2013 Block symbol for anti windup integrator Figure D.13 \u2013 Block diagram for implementation of anti windup integrator Figure D.14 \u2013 Block symbol for integrator with reset <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | D.11 First order filter with limitation detection D.12 Rising edge detection Figure D.15 \u2013 Block symbol for first order filter with limitation detection Figure D.16 \u2013 Block diagram for implementation of first order filterwith limitation detection Figure D.17 \u2013 Block symbol rising edge detection <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | D.13 Falling edge detection D.14 Delay flag Figure D.18 \u2013 Block diagram for rising edge detection Figure D.19 \u2013 Block symbol falling edge detection Figure D.20 \u2013 Block diagram for falling edge detection Figure D.21 \u2013 Block symbol for delay flag <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | D.15 Variable delay flag Figure D.22 \u2013 Block diagram for implementation of delay flag Figure D.23 \u2013 Block symbol for delay flag <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | D.16 Dead band D.17 Circuit breaker Figure D.24 \u2013 Block diagram for implementation of variable delay flag Figure D.25 \u2013 Block symbol dead band Figure D.26 \u2013 Block symbol for circuit breaker <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Wind energy generation systems – Electrical simulation models. Generic models<\/b><\/p>\n |