{"id":410505,"date":"2024-10-20T05:40:44","date_gmt":"2024-10-20T05:40:44","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-cen-tr-17603-32-252022\/"},"modified":"2024-10-26T10:27:11","modified_gmt":"2024-10-26T10:27:11","slug":"bsi-pd-cen-tr-17603-32-252022","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-cen-tr-17603-32-252022\/","title":{"rendered":"BSI PD CEN\/TR 17603-32-25:2022"},"content":{"rendered":"

The intended users of the \u201cMechanical shock design and verification handbook\u201d are engineers involved in design, analysis and verification in relation to shock environment in spacecraft. The current know-how relevant to mechanical shock design and verification is documented in this handbook in order to make this expertise available to all European spacecraft and payload developers. The handbook provides adequate guidelines for shock design and verification; therefore it includes advisory information, recommendations and good practices, rather than requirements. The handbook covers the shock in its globally, from the derivation of shock input to equipment and sub-systems inside a satellite structure, until its verification to ensure a successful qualification, and including its consequences on equipment and sub-systems. However the following aspects are not treated herein: – No internal launcher shock is treated in the frame of this handbook even if some aspects are common to those presented hereafter. They are just considered as a shock source (after propagation in the launcher structure) at launcher\/spacecraft interface. – Shocks due to fall of structure or equipment are not taken into account as they are not in the frame of normal development of a spacecraft.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
2<\/td>\nundefined <\/td>\n<\/tr>\n
4<\/td>\n2.4 24BReferences of Part 4
3.1 25BTerms and definitions from other documents
3.2 26BTerms and definitions specific to the present document
3.3 27BAbbreviated terms
4 6BBackground \u2013 Shock environment description
4.1 28BShock definition and main characteristics
4.1.4 92BShock response spectra (SRS)
5 7BShock events
5.1 29BShock occurrence
5.2 30BShock environmental categories
6 8BIntroduction to shock design and verification process
6.1 31BPresentation of the global process
6.2 32BMeans to conduct an evaluation of shock environment and criticality
7 9BShocks in spacecraft
7.1 33BOverview
7.2 34BPotential shock sources for spacecraft
7.3 35BShocks devices description
7.4 36BDetailed information on specific shock events
7.4.1 93BOverview
7.4.2 94BLauncher induced shocks
7.4.3 95BClampband release
7.5 37BConclusion
8 10BShock inputs derivation by similarityheritageextrapolation
8.1 38BOverview
9 11BShock inputs derivation by numerical analysis
10 12BDeriving a specification from a shock environment <\/td>\n<\/tr>\n
5<\/td>\n7.4.4 96BOther S\/C separation systems
7.4.5 97BInternal shock sources
7.4.6 98BLanding and splashdown
8.2 39BSimilarity-heritage-extrapolation methods principle
8.2.1 99BOverview
8.2.2 100BUse of database
8.2.3 101BZoning procedure
8.2.4 102BSRS ratio as approximation of transfer functions
8.2.5 103BDifference between structural model and flight model
8.2.6 104BStatistical methods to derive maximum expected environment
8.3 40BSimilarity-heritage-extrapolation methods in practice
8.3.1 105BMethod A \u2013 Point source excitation
8.3.2 106BMethod B \u2013 Clampband excitation
8.3.3 107BMethod C \u2013 Launcher induced shock
8.3.4 108BMethod D \u2013 Unified approach and practical implementation of attenuation rules for typical spacecraft shock generated environments
8.3.5 109BAdditional attenuation factors
8.3.6 110BMethod E \u2013 Shock responses in instruments
9.1 41BNumerical simulation principles
9.1.1 111BRationale and limitations
9.2 42BFinite Element Analysis (FEA) Numerical methods
9.2.1 112BComparison of explicit and implicit methods
9.2.2 113BExplicit and implicit integration schemes
9.2.3 114BExample of simulation codes (implicit and explicit)
9.2.4 115BModelling aspects
9.3 43BStatistical Energy Analysis (SEA) Numerical Methods
9.3.1 116BThe classical SEA approach
9.3.2 117BThe Transient SEA formulation
9.3.3 118BPrediction of shock response by Local Modal Phase Reconstruction (LMPR)
9.3.4 119BVirtual SEA modelling for robust SEA modelling in the mid-frequency
9.4 44BBest practices for shock derivation by simulation
9.5 45BExamples of methodology for numerical simulation
9.5.1 120BNumerical simulation for clampband release
9.5.2 121BNumerical simulation for Shogun
10.1 46BSpecification tool
11 13BShock attenuation
12 14BGeneral approach to shock verification <\/td>\n<\/tr>\n
6<\/td>\n9.5.3 122BNumerical simulation for launcher induced shock
9.5.4 123BImplicit vs. explicit method: Example of a shock prediction on a complex structure
9.5.5 124BShock prediction analysis examples using SEA-Shock module of SEA+ software
10.2 47BDeriving the qualification environment \u2013 MEE and qualification margin
10.3 48BFrom level derivation\/Measure to specification
11.1 49BDefinitions
11.1.1 125BHistory of shock attenuation
11.1.2 126BImpedance breakdown
11.1.3 127BShock and vibration Isolator
11.1.4 128BDamper
11.1.5 129BShock absorber
11.2 50BTheoretical background
11.2.1 130BShock attenuation problematic approach
11.2.2 131BShock isolator device features
11.2.3 132BRubber and damping effect
11.2.4 133BElastomer type selection
11.3 51BAttenuator device development
11.3.1 134BOverview
11.3.2 135BAttenuator requirement definition
11.3.3 136BAttenuator device development logic
11.4 52BAttenuator device manufacturing
11.4.1 137BOverview
11.4.2 138BManufacturing process
11.4.3 139BMoulding technology
11.4.4 140BManufacturing limitations
11.5 53BProduct assurance logic
11.6 54BExisting attenuator products
11.6.1 141BOverview
11.6.2 142BCompact shock attenuators for electronic equipment
11.6.3 143BSASSA (shock attenuator system for spacecraft and adaptor)
11.6.4 144BShock isolators for EXPERT on-board equipment
12.1 55BRationale for shock verification
12.2 56BTest rationale and model philosophy
12.3 57BEnvironmental test categories
13 15BShock testing
14 16BData analysis tools for shock <\/td>\n<\/tr>\n
7<\/td>\n12.2.1 145BQualification test
12.2.2 146BAcceptance test
12.2.3 147BSystem \/ subsystem distinction
12.2.4 148BModel philosophy
12.3.1 149BCombination or separation of sources
12.3.2 150BPyroshock environmental categories
12.4 58BShock sensitive equipment and severity criteria
12.4.1 151BIdentification of shock sensitive equipment
12.4.2 152BSeverity criteria
12.4.3 153BSynthesis
12.5 59BEquivalence between shock and other mechanical environment
12.5.1 154BQuasi static equivalence \u2013 effective mass method
12.5.2 155BUse of sine vibration test data
12.5.3 156BUse of random vibration test data
12.6 60BSimilarity between equipment \u2013 Verification by similarity
12.6.1 157BIntroduction
12.6.2 158BSimilarity criteria for shock
12.6.3 159BExample of process for verification by similarity
12.7 61BSpecific guidelines for shock verification
12.7.1 160BOptical instrument
12.7.2 161BPropulsion sub system
13.1 62BShock test specifications
13.1.1 162BTest levels and forcing function
13.1.2 163BNumber of applications
13.1.3 164BMounting conditions
13.1.4 165BTest article operation
13.1.5 166BSafety and cleanliness
13.1.6 167BInstrumentation
13.1.7 168BTest tolerances
13.1.8 169BTest success criteria
13.2 63BCriteria for test facility selection
13.3 64BTest methods and facilities
13.3.1 170BBasis
13.3.2 171BProcedure I \u2013 System level shock test
13.4 65BTest monitoring
15 17BShock data validation
16 18BIntroduction to shock damage risk assessment and objective <\/td>\n<\/tr>\n
8<\/td>\n13.3.3 172BProcedure II \u2013 Equipment shock test by pyrotechnic device (explosive detonation)
13.3.4 173BProcedure III \u2013 Equipment shock test by mechanical impact (metal-metal impact)
13.3.5 174BProcedure IV \u2013 Equipment shock test with an electrodynamic shaker
13.4.1 175BAccelerometers
13.4.2 176BStrain gauges
13.4.3 177BLoad cells
13.4.4 178BLaser vibrometer
13.4.5 179BAcquisition systems
13.5 66BIn-flight shock monitoring
13.5.1 180BOverview
13.5.2 181BVEGA in-flight acquisition systems
14.1 67BIntroduction
14.2 68BShock Response Spectra (SRS)
14.2.1 182BBasis
14.2.2 183BDefinition
14.2.3 184BSRS properties
14.2.4 185BSRS algorithm
14.2.5 186BRecommendations on SRS computation
14.2.6 187BQ-factor
14.2.7 188BSRS limitations
14.3 69BFast Fourier Transform (FFT)
14.3.1 189BFFT definition
14.3.2 190BPrecautions
14.4 70BTime-Frequency Analysis (TFA)
14.4.1 191BGeneral
14.4.2 192BLinear Time-Frequency Transform (TFT)
14.4.3 193BQuadratic Time-Frequency Transform
14.4.4 194BInterpretation and precautions
14.5 71BProny decomposition
14.5.1 195BDefinition
14.5.2 196BBasic scheme
14.5.3 197BAdvanced scheme
14.6 72BDigital filters
15.1 73BOverview
15.2 74BVisual inspection
17 19BUnit susceptibility with respect to shock <\/td>\n<\/tr>\n
9<\/td>\n2.1 21BReferences of Part 1
2.2 22BReferences of Part 2
14.5.4 198BUse and limitation
14.6.1 199BBasis
14.6.2 200BDefinition and parameters
14.6.3 201BFIR filters
14.6.4 202BIIR filters
14.6.5 203BPrecautions
15.3 75BData analysis \u2013 simplified criteria
15.3.1 204BDuration analysis
15.3.2 205BValidity frequency range
15.3.3 206BFinal validity criteria – Positive versus negative SRS
15.4 76BData analysis \u2013 refined criteria \u2013 Velocity validation
15.5 77BCorrections for anomalies
15.5.1 207BOverview
15.5.2 208BCorrection for zeroshift
15.5.3 209BCorrection for power line pickup
16.1 78BOverview
16.2 79BAssessment context
16.3 80BOutputs of SDRA and associated limitations
17.1 81BOverview
17.2 82BDerivation of qualification shock levels at unit interface
17.3 83BIdentification of critical frequency ranges
17.4 84BConsiderations related to life duration and mission
17.5 85BList of shock sensitive components\/units
17.5.1 210BOverview
17.5.2 211BElectronic components and associated degradation modes
17.5.3 212BFunctional mechanical assemblies
17.5.4 213BMechanisms and associated degradation modes
18 20BShock damage risk analysis
18.1 86BRequired inputs for detailed SDRA
18.2 87BEvaluation of transmissibility between equipment and sensitive components interfaces
18.2.1 214BOverview
18.2.2 215BDerivation by extrapolation from test data
18.2.3 216BShock response prediction based on transmissibility
18.3 88BVerification method per type of components and\/or units <\/td>\n<\/tr>\n
10<\/td>\n2.3 23BReferences of Part 3
4.1.1 89BShock definition
4.1.2 90BPhysical aspects of shocks
4.1.3 91BMain shock effects
4.1.4.1 222BOverview
4.1.4.2 223BShock response spectra definition
4.1.4.3 224BSRS properties
18.2.4 217BGuideline for equipment shock analysis
18.3.1 218BElectronic equipment
18.3.2 219BMechanisms \u2013 Ball bearings
18.3.3 220BValves
18.3.4 221BOptical components <\/td>\n<\/tr>\n
13<\/td>\n1 3BScope <\/td>\n<\/tr>\n
14<\/td>\n2 4BReferences <\/td>\n<\/tr>\n
21<\/td>\n3 5BTerms, definitions and abbreviated terms <\/td>\n<\/tr>\n
28<\/td>\n4.1.4.4 225BRecommendations on SRS calculation
4.1.4.5 226BSRS limitations <\/td>\n<\/tr>\n
29<\/td>\n7.4.2.1 227BExample of spacecraft\/LV shock compatibility test \u2013 SHOGUN <\/td>\n<\/tr>\n
32<\/td>\n7.4.2.2 228BExample of spacecraft\/LV shock compatibility test \u2013 VESTA
7.4.3.1 229BOverview <\/td>\n<\/tr>\n
48<\/td>\n7.4.3.2 230BStandard clampband device <\/td>\n<\/tr>\n
49<\/td>\n7.4.3.3 231BLow shock clampband device <\/td>\n<\/tr>\n
51<\/td>\n7.4.4.1 232BMechanical lock systems by EUROCKOT
7.4.4.2 233BPSLV separation system <\/td>\n<\/tr>\n
57<\/td>\n7.4.4.3 234BDnepr explosive bolts <\/td>\n<\/tr>\n
58<\/td>\n7.4.4.4 235BAriane 5 micro satellite separation system <\/td>\n<\/tr>\n
60<\/td>\n7.4.4.5 236BSoyouz Dispenser <\/td>\n<\/tr>\n
61<\/td>\n8.2.2.1 237BCharacterization database <\/td>\n<\/tr>\n
62<\/td>\n8.2.2.2 238BSpacecraft test results databases <\/td>\n<\/tr>\n
65<\/td>\n8.2.6.1 239BOverview <\/td>\n<\/tr>\n
76<\/td>\n8.2.6.2 240BNormal Tolerance Limit method <\/td>\n<\/tr>\n
77<\/td>\n8.2.6.3 241BBootstrap method <\/td>\n<\/tr>\n
85<\/td>\n8.2.6.4 242BComparison between P99\/90 and P95\/50+3 dB levels <\/td>\n<\/tr>\n
86<\/td>\n8.2.6.5 243BConclusions <\/td>\n<\/tr>\n
90<\/td>\n8.3.1.1 244BPresentation of the used method <\/td>\n<\/tr>\n
92<\/td>\n8.3.1.2 245BExample 1 \u2013 Shock mapping of the EXPERT re-entry vehicle due to separation from LV <\/td>\n<\/tr>\n
93<\/td>\n8.3.1.3 246BExample 2 \u2013 Internal shock induced by appendages deployment <\/td>\n<\/tr>\n
95<\/td>\n8.3.2.1 247BPresentation of the used method <\/td>\n<\/tr>\n
96<\/td>\n8.3.2.2 248BGeneral observations for a better understanding of Clampband release shock propagation <\/td>\n<\/tr>\n
97<\/td>\n8.3.3.1 249BPresentation of the used method <\/td>\n<\/tr>\n
101<\/td>\n8.3.3.2 250BGeneral observations for a better understanding of launcher induced shock propagation <\/td>\n<\/tr>\n
105<\/td>\n8.3.3.3 251BDifferences between clampband and launcher induced shock <\/td>\n<\/tr>\n
107<\/td>\n8.3.4.1 252BJunction attenuation factors <\/td>\n<\/tr>\n
110<\/td>\n8.3.4.2 253BDistance attenuation factors <\/td>\n<\/tr>\n
113<\/td>\n8.3.4.3 254BCalculation of total shock attenuation factors and derivation of shock output <\/td>\n<\/tr>\n
116<\/td>\n8.3.4.4 255BCorrection factors <\/td>\n<\/tr>\n
118<\/td>\n8.3.4.5 256BMethodology correlation with test results <\/td>\n<\/tr>\n
119<\/td>\n8.3.4.6 257BExample of implementation of the methodology <\/td>\n<\/tr>\n
120<\/td>\n8.3.6.1 258BMethod E-1: Transmissibility approach \u2013 transfer function scaled to input shock specification <\/td>\n<\/tr>\n
121<\/td>\n8.3.6.2 259BMethod E-2: Transient analysis approach \u2013 coupled analysis with platform <\/td>\n<\/tr>\n
122<\/td>\n9.2.4.1 260BMeshing size <\/td>\n<\/tr>\n
126<\/td>\n9.2.4.2 261BTime step <\/td>\n<\/tr>\n
127<\/td>\n9.2.4.3 262BElements type <\/td>\n<\/tr>\n
133<\/td>\n9.2.4.4 263BModelling of equipment <\/td>\n<\/tr>\n
141<\/td>\n9.2.4.5 264BRestitution point <\/td>\n<\/tr>\n
142<\/td>\n9.2.4.6 265BModelling of junctions <\/td>\n<\/tr>\n
143<\/td>\n9.2.4.7 266BDamping modelling <\/td>\n<\/tr>\n
144<\/td>\n9.2.4.8 267BSource modelling and boundary conditions <\/td>\n<\/tr>\n
146<\/td>\n9.5.3.1 268BOverview <\/td>\n<\/tr>\n
148<\/td>\n9.5.3.2 269BA5 \/ MSG coupled shock analyses <\/td>\n<\/tr>\n
152<\/td>\n9.5.3.3 270BAriane5 Low Shock Recovery Plan Analyses <\/td>\n<\/tr>\n
167<\/td>\n9.5.3.4 271BSynthesis
11.2.4.1 272BOverview <\/td>\n<\/tr>\n
172<\/td>\n11.2.4.2 273BNatural rubber <\/td>\n<\/tr>\n
175<\/td>\n11.2.4.3 274BBlack Synthetic rubbers <\/td>\n<\/tr>\n
201<\/td>\n11.2.4.4 275BSilicon rubbers
11.3.2.1 276BIntroduction <\/td>\n<\/tr>\n
202<\/td>\n11.3.2.2 277BPerformance specification <\/td>\n<\/tr>\n
203<\/td>\n11.3.2.3 278BEnvironment definition <\/td>\n<\/tr>\n
204<\/td>\n11.3.2.4 279BImportant factors affecting isolator selection \/ definition
11.3.2.5 280BModel specification <\/td>\n<\/tr>\n
205<\/td>\n11.3.3.1 281BIntroduction <\/td>\n<\/tr>\n
206<\/td>\n11.3.3.2 282BAttenuator pre-dimensioning <\/td>\n<\/tr>\n
207<\/td>\n11.3.3.3 283BMaterial characterization
11.3.3.4 284BDesign preliminaries
11.3.3.5 285BPrototyping <\/td>\n<\/tr>\n
208<\/td>\n11.3.3.6 286BAttenuator design development <\/td>\n<\/tr>\n
211<\/td>\n11.6.2.1 287BPurpose of shock isolation device
11.6.2.2 288BShock isolation device principle
11.6.2.3 289BPerformance achieved with the isolator device <\/td>\n<\/tr>\n
216<\/td>\n11.6.3.1 290BRequirement specification analysis
11.6.3.2 291BBaseline design presentation (QM for pre-qualification) <\/td>\n<\/tr>\n
217<\/td>\n11.6.3.3 292BSASSA system qualification with Eurostar3000 STM <\/td>\n<\/tr>\n
218<\/td>\n11.6.3.4 293BSASSA lessons learnt <\/td>\n<\/tr>\n
219<\/td>\n11.6.4.1 294BOverview <\/td>\n<\/tr>\n
220<\/td>\n11.6.4.2 295BMain Technical specifications and assessments <\/td>\n<\/tr>\n
222<\/td>\n11.6.4.3 296BPresentation of the design <\/td>\n<\/tr>\n
223<\/td>\n11.6.4.4 297BPerformances
12.2.1.1 298BQualification shock test on QM unit
12.2.1.2 299BCase of re-test on QM unit <\/td>\n<\/tr>\n
225<\/td>\n12.2.1.3 300BCase of qualification shock test on PFM unit <\/td>\n<\/tr>\n
231<\/td>\n12.4.2.1 301BOverview
12.4.2.2 302BElectronic units <\/td>\n<\/tr>\n
232<\/td>\n12.4.2.3 303BStructural and non-sensitive equipment <\/td>\n<\/tr>\n
237<\/td>\n12.4.2.4 304BOther sensitive units
12.5.1.1 305BDefinition <\/td>\n<\/tr>\n
241<\/td>\n12.5.1.2 306BExample of application <\/td>\n<\/tr>\n
249<\/td>\n12.5.1.3 307BApplicability and limitations: <\/td>\n<\/tr>\n
250<\/td>\n12.5.3.1 308BIntroduction <\/td>\n<\/tr>\n
251<\/td>\n12.5.3.2 309BSignal processing tools to convert random PSD into Response Spectrum <\/td>\n<\/tr>\n
252<\/td>\n12.5.3.3 310BApplicability of random equivalence w.r.t. shock <\/td>\n<\/tr>\n
254<\/td>\n12.6.3.1 311BAt complete unit level
12.6.3.2 312BAt Sub-equipment level (module, PCB,\u2026) <\/td>\n<\/tr>\n
258<\/td>\n12.6.3.3 313BAt component level (module, PCB,\u2026) <\/td>\n<\/tr>\n
261<\/td>\n12.6.3.4 314BComplementary activities to support a verification by similarity <\/td>\n<\/tr>\n
262<\/td>\n12.7.1.1 315BOverview <\/td>\n<\/tr>\n
263<\/td>\n12.7.1.2 316BOptical instrument definition and sensitive components <\/td>\n<\/tr>\n
264<\/td>\n12.7.1.3 317BTypical instrument architecture and accommodation on the spacecraft <\/td>\n<\/tr>\n
265<\/td>\n12.7.1.4 318BGeneral design rules w.r.t. shock
12.7.1.5 319BVerification logic w.r.t. shock <\/td>\n<\/tr>\n
267<\/td>\n12.7.2.1 320BOverview <\/td>\n<\/tr>\n
268<\/td>\n12.7.2.2 321BPropulsion sub-system description <\/td>\n<\/tr>\n
271<\/td>\n12.7.2.3 322BPropulsion shock source <\/td>\n<\/tr>\n
272<\/td>\n12.7.2.4 323BGeneral design rules
12.7.2.5 324BVerification of the propulsion sub-system w.r.t. shock environment <\/td>\n<\/tr>\n
276<\/td>\n13.3.2.1 325BTest configuration <\/td>\n<\/tr>\n
281<\/td>\n13.3.2.2 326BShock test required by Launcher Authority <\/td>\n<\/tr>\n
282<\/td>\n13.3.2.3 327BShock test required by Spacecraft <\/td>\n<\/tr>\n
290<\/td>\n13.3.2.4 328BTest sequence <\/td>\n<\/tr>\n
291<\/td>\n13.3.2.5 329BSystem test specificities <\/td>\n<\/tr>\n
300<\/td>\n13.3.3.1 330BTest facility presentation <\/td>\n<\/tr>\n
302<\/td>\n13.3.3.2 331BTest sequence
13.3.4.1 332BTest facility presentation <\/td>\n<\/tr>\n
304<\/td>\n13.3.4.2 333BTest sequence <\/td>\n<\/tr>\n
309<\/td>\n13.3.5.1 334BIntroduction <\/td>\n<\/tr>\n
310<\/td>\n13.3.5.2 335BTest facility presentation <\/td>\n<\/tr>\n
320<\/td>\n13.3.5.3 336BShaker test specificities <\/td>\n<\/tr>\n
322<\/td>\n13.4.1.1 337BPiezoelectric accelerometers (PE) <\/td>\n<\/tr>\n
324<\/td>\n13.4.1.2 338BPiezoelectric accelerometers with integrated electronics (IEPE) <\/td>\n<\/tr>\n
331<\/td>\n13.4.1.3 339BPiezoresistive accelerometers (PR) <\/td>\n<\/tr>\n
338<\/td>\n13.4.1.4 340BShock sensor selection criteria <\/td>\n<\/tr>\n
340<\/td>\n13.4.1.5 341BCharge amplifiers <\/td>\n<\/tr>\n
342<\/td>\n13.4.1.6 342BAccelerometer mounting <\/td>\n<\/tr>\n
343<\/td>\n13.4.1.7 343BAccelerometer cabling <\/td>\n<\/tr>\n
349<\/td>\n13.4.2.1 344BOverview <\/td>\n<\/tr>\n
351<\/td>\n13.4.2.2 345BType of resistance elements <\/td>\n<\/tr>\n
353<\/td>\n13.4.2.3 346BGauge size
13.4.2.4 347BConditions of bonding (gluing or adhesion) of the strain gauge to the structure
13.4.2.5 348BSensitivity <\/td>\n<\/tr>\n
354<\/td>\n13.4.2.6 349BFactors affecting optimum excitation <\/td>\n<\/tr>\n
355<\/td>\n13.4.2.7 350BThermal Considerations <\/td>\n<\/tr>\n
356<\/td>\n13.4.2.8 351BPotential Error Sources <\/td>\n<\/tr>\n
357<\/td>\n13.4.5.1 352BOverview
13.4.5.2 353BFar field and mid field measurements
13.4.5.3 354BNear field measurements <\/td>\n<\/tr>\n
368<\/td>\n13.4.5.4 355BConcerns with acceleration measurement with transducers: zero shift during shock, or dynamic offset
13.4.5.5 356BConcerns with strain measurement via cables glued to the structure
13.4.5.6 357BAnalog versus digital <\/td>\n<\/tr>\n
369<\/td>\n13.4.5.7 358BPreventive techniques for clean measurement <\/td>\n<\/tr>\n
373<\/td>\n14.4.2.1 359BOverview <\/td>\n<\/tr>\n
374<\/td>\n14.4.2.2 360BShort-time Fourier transform <\/td>\n<\/tr>\n
376<\/td>\n14.4.2.3 361BWavelet Transform (WT) <\/td>\n<\/tr>\n
396<\/td>\n14.4.3.1 362BOverview
14.4.3.2 363BSpectrogram <\/td>\n<\/tr>\n
398<\/td>\n14.4.3.3 364BWigner-Ville Distribution (WVD) <\/td>\n<\/tr>\n
399<\/td>\n14.4.3.4 365BPseudo Wigner-Ville Distribution (PWVD)
14.4.3.5 366BSmoothed-Pseudo Wigner-Ville Distribution <\/td>\n<\/tr>\n
400<\/td>\n15.3.2.1 367BOverview <\/td>\n<\/tr>\n
401<\/td>\n15.3.2.2 368BSignal duration <\/td>\n<\/tr>\n
402<\/td>\n15.3.2.3 369BBackground noise <\/td>\n<\/tr>\n
415<\/td>\n15.3.2.4 370BData sampling
15.5.3.1 371BOverview
15.5.3.2 372BPower line pick-up cleaning principle <\/td>\n<\/tr>\n
416<\/td>\n15.5.3.3 373BPower line pick-up cleaning steps <\/td>\n<\/tr>\n
422<\/td>\n15.5.3.4 374BPrecautions
17.5.2.1 375BRelay
17.5.2.2 376BQuartz <\/td>\n<\/tr>\n
423<\/td>\n17.5.2.3 377BMagnetic component (RM), transformer and self <\/td>\n<\/tr>\n
435<\/td>\n17.5.2.4 378BHybrid <\/td>\n<\/tr>\n
439<\/td>\n17.5.2.5 379BTantalum capacitor <\/td>\n<\/tr>\n
445<\/td>\n17.5.2.6 380BHeavy or large component <\/td>\n<\/tr>\n
449<\/td>\n17.5.2.7 381BOptical components and connectors <\/td>\n<\/tr>\n
450<\/td>\n17.5.2.8 382BComponents mounted on low insertion force DIP socket <\/td>\n<\/tr>\n
451<\/td>\n17.5.2.9 383BMobile Particles in the cavities of electronic components <\/td>\n<\/tr>\n
453<\/td>\n17.5.2.10 384BSynthesis on threshold levels
17.5.3.1 385BOverview <\/td>\n<\/tr>\n
454<\/td>\n17.5.3.2 386BRF channel filters (IMUX, OMUX,\u2026) <\/td>\n<\/tr>\n
456<\/td>\n17.5.3.3 387BIso-static mount and bonding <\/td>\n<\/tr>\n
458<\/td>\n18.2.4.1 388BOverview
18.2.4.2 389BMethod 1 – Transient excitation of unit-plate coupled system
18.2.4.3 390BMethod 2 \u2013 Base transient excitation of the unit <\/td>\n<\/tr>\n
468<\/td>\n18.2.4.4 391BMethod 3 – Modal solutions
18.2.4.5 392BExample of advanced transient (method 2) and spectrum response analyses (method 3B) <\/td>\n<\/tr>\n
472<\/td>\n18.3.1.1 393BVerification methodology <\/td>\n<\/tr>\n
473<\/td>\n18.3.1.2 394BValidation for structural parts <\/td>\n<\/tr>\n
478<\/td>\n18.3.1.3 395BValidation for component mounting technologies <\/td>\n<\/tr>\n
482<\/td>\n18.3.1.4 396BValidation for acceleration sensitive components <\/td>\n<\/tr>\n
483<\/td>\n18.3.1.5 397BGeneral considerations on equipment design and verification w.r.t. shock
18.3.1.6 398BImportant considerations for robust equipment design w.r.t. shock <\/td>\n<\/tr>\n
487<\/td>\n18.3.1.7 399BSDRA example 1 \u2013 Damage assessment of a large hybrid on PCB <\/td>\n<\/tr>\n
488<\/td>\n18.3.1.8 400BSDRA example 2 \u2013 Damage assessment of relay mounted on a PCB <\/td>\n<\/tr>\n
495<\/td>\n18.3.2.1 401BVerification methodology <\/td>\n<\/tr>\n
502<\/td>\n18.3.2.2 402BBearing applications <\/td>\n<\/tr>\n
503<\/td>\n18.3.2.3 403BMethods of Bearing Preloading <\/td>\n<\/tr>\n
504<\/td>\n18.3.2.4 404BBearing Damage
18.3.2.5 405BAnalysis of Bearing Loads, Deflections and Stresses <\/td>\n<\/tr>\n
507<\/td>\n18.3.2.6 406BConsequences of dynamic behaviour <\/td>\n<\/tr>\n
508<\/td>\n18.3.2.7 407BLogic for Allowable Stresses Resulting from Shock <\/td>\n<\/tr>\n
511<\/td>\n18.3.2.8 408BDerivation of guidelines for SDRA of bearings <\/td>\n<\/tr>\n
513<\/td>\n18.3.2.9 409BGuidelines for calculating allowable shock-induced peak Hertzian contact stress levels and bearing gapping <\/td>\n<\/tr>\n
516<\/td>\n18.3.2.10 410BRole of the Lubricant <\/td>\n<\/tr>\n
517<\/td>\n18.3.2.11 411BExamples and Application of Method <\/td>\n<\/tr>\n
520<\/td>\n18.3.2.12 412BSDRA example 1 \u2013 MSG Scan Mirror Bearing <\/td>\n<\/tr>\n
521<\/td>\n18.3.2.13 413BSDRA example 2 \u2013 MSG Scan Mirror Bearing \u2013 Higher loads inducing gapping <\/td>\n<\/tr>\n
523<\/td>\n18.3.3.1 414BVerification methodology <\/td>\n<\/tr>\n
524<\/td>\n18.3.3.2 415BSDRA Example 1 \u2013 Valve with mechanical \u201cstop-end\u201d <\/td>\n<\/tr>\n
527<\/td>\n18.3.3.3 416BSDRA Example 2 \u2013 Valve without mechanical \u201cstop-end\u201d <\/td>\n<\/tr>\n
528<\/td>\n18.3.4.1 417BVerification methodology <\/td>\n<\/tr>\n
530<\/td>\n18.3.4.2 418BEvaluation of stress induced by the shock transient <\/td>\n<\/tr>\n
531<\/td>\n18.3.4.3 419BStructural brittle materials <\/td>\n<\/tr>\n
535<\/td>\n18.3.4.4 420BSDRA example \u2013 Mirror mounted on \u201cmirror cell\u201d and ISM <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

Space engineering. Mechanical shock design and verification handbook<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
BSI<\/b><\/a><\/td>\n2022<\/td>\n544<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":410514,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2641],"product_tag":[],"class_list":{"0":"post-410505","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-bsi","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/410505","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/410514"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=410505"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=410505"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=410505"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}