{"id":410511,"date":"2024-10-20T05:40:45","date_gmt":"2024-10-20T05:40:45","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-cen-tr-17603-32-262022\/"},"modified":"2024-10-26T10:27:13","modified_gmt":"2024-10-26T10:27:13","slug":"bsi-pd-cen-tr-17603-32-262022","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-cen-tr-17603-32-262022\/","title":{"rendered":"BSI PD CEN\/TR 17603-32-26:2022"},"content":{"rendered":"

This document recommends engineering practices for European programs and projects. It may be cited in contracts and program documents as a reference for guidance to meet specific program\/project needs and constraints. The target users of this handbook are engineers involved in design, analysis and verification of spacecraft and payloads in relation to general structural loads analysis issues. The current know\u2010how is documented in this handbook in order to make this expertise available to all European developers of space systems. It is a guidelines document; therefore it includes advisory information rather than requirements.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
2<\/td>\nundefined <\/td>\n<\/tr>\n
15<\/td>\n1 Scope <\/td>\n<\/tr>\n
16<\/td>\n2 References <\/td>\n<\/tr>\n
17<\/td>\n3 Terms, definitions and abbreviated terms
3.1 Terms from other documents <\/td>\n<\/tr>\n
18<\/td>\n3.2 Terms specific to the present document <\/td>\n<\/tr>\n
19<\/td>\n3.3 Abbreviated terms <\/td>\n<\/tr>\n
23<\/td>\n4 Overview of the loads analysis process
4.1 Introduction <\/td>\n<\/tr>\n
24<\/td>\n4.2 Loads cycles <\/td>\n<\/tr>\n
25<\/td>\n4.3 Logic and sequence of loads analysis <\/td>\n<\/tr>\n
26<\/td>\n4.4 Loads and verification approach (prototype or protoflight) <\/td>\n<\/tr>\n
28<\/td>\n4.5 Loads and levels of assembly <\/td>\n<\/tr>\n
29<\/td>\n4.6 Mechanical loads for design and verification
4.6.1 Spacecraft flight environments and dynamic loads
4.6.2 Vibration environments and frequency range <\/td>\n<\/tr>\n
30<\/td>\n4.6.3 Introduction to analysis and test types for verifying mechanical requirements <\/td>\n<\/tr>\n
32<\/td>\n4.6.4 Static and quasi-static loads <\/td>\n<\/tr>\n
34<\/td>\n4.6.5 Static loads test
4.6.5.1 General
4.6.5.2 Example of strategy for defining the static test load cases <\/td>\n<\/tr>\n
35<\/td>\n4.6.6 Spacecraft-launcher coupled loads analysis <\/td>\n<\/tr>\n
36<\/td>\n4.6.7 Sine vibration
4.6.7.1 Overview <\/td>\n<\/tr>\n
37<\/td>\n4.6.7.2 Spacecraft sine vibration test <\/td>\n<\/tr>\n
38<\/td>\n4.6.8 Spacecraft design loads and test predictions versus LV\/SC CLA results <\/td>\n<\/tr>\n
39<\/td>\n4.6.9 Random vibration and vibro-acoustic environment
4.6.9.1 Random vibration analysis and testing
4.6.9.2 Vibro-acoustic response analysis <\/td>\n<\/tr>\n
40<\/td>\n4.6.9.3 Acoustic testing <\/td>\n<\/tr>\n
41<\/td>\n4.6.10 Shock testing <\/td>\n<\/tr>\n
42<\/td>\n4.7 Basic principles, criteria and assumptions in structure and loads verification
4.7.1 Introduction
4.7.2 Equivalence criteria for loads and environments <\/td>\n<\/tr>\n
44<\/td>\n4.7.3 Criteria for assessing verification loads
4.7.4 Main inconsistencies of the loads verification process <\/td>\n<\/tr>\n
45<\/td>\n4.8 Notching in sine and random vibration testing
4.8.1 Introduction <\/td>\n<\/tr>\n
46<\/td>\n4.8.2 Example of requirements
4.8.3 Basic principles <\/td>\n<\/tr>\n
47<\/td>\n4.8.4 Response and force limiting <\/td>\n<\/tr>\n
48<\/td>\n4.8.5 Criteria for notching justification
4.8.5.1 Overview
4.8.5.2 Primary notching in sine vibration test <\/td>\n<\/tr>\n
49<\/td>\n4.8.5.3 Secondary notching in sine vibration test
4.8.5.4 Primary notching in random vibration test
4.8.5.5 Secondary notching in random vibration test <\/td>\n<\/tr>\n
50<\/td>\n4.8.5.6 Notching and verification approach (prototype or protoflight)
4.8.5.7 Reporting
4.8.6 Conclusions on notching in sine and random vibration testing <\/td>\n<\/tr>\n
51<\/td>\n4.9 References <\/td>\n<\/tr>\n
52<\/td>\n5 Background on structural dynamics
5.1 Introduction
5.1.1 The dynamic environment <\/td>\n<\/tr>\n
53<\/td>\n5.1.2 Types of structural analysis
5.1.3 List of topics <\/td>\n<\/tr>\n
54<\/td>\n5.1.4 Principal notations
5.1.4.1 Matrix conventions
5.1.4.2 Scalars or matrices <\/td>\n<\/tr>\n
55<\/td>\n5.1.4.3 Subscripts
5.1.4.4 Other notations <\/td>\n<\/tr>\n
56<\/td>\n5.2 Dynamic environments \u2013 analysis and specifications
5.2.1 Generalities <\/td>\n<\/tr>\n
57<\/td>\n5.2.2 Example – the maiden flight of Ariane 1 <\/td>\n<\/tr>\n
59<\/td>\n5.2.3 Sine environment
5.2.3.1 Characterisation <\/td>\n<\/tr>\n
60<\/td>\n5.2.3.2 Response of the 1-DOF system <\/td>\n<\/tr>\n
61<\/td>\n5.2.3.3 Influence of the sweep rate <\/td>\n<\/tr>\n
64<\/td>\n5.2.4 Transient environment
5.2.4.1 Characterisation
5.2.4.2 Response of the 1-DOF system
5.2.4.3 Shock response spectra <\/td>\n<\/tr>\n
67<\/td>\n5.2.5 Random environment
5.2.5.1 Random process <\/td>\n<\/tr>\n
69<\/td>\n5.2.5.2 Frequency characterisation <\/td>\n<\/tr>\n
71<\/td>\n5.2.5.3 Response of the 1-DOF system <\/td>\n<\/tr>\n
73<\/td>\n5.2.5.4 Shock response spectra for random environments <\/td>\n<\/tr>\n
76<\/td>\n5.2.6 Sine-equivalent dynamics
5.2.6.1 Introduction
5.2.6.2 Sine-equivalent level <\/td>\n<\/tr>\n
78<\/td>\n5.2.6.3 Influence of damping <\/td>\n<\/tr>\n
80<\/td>\n5.2.6.4 Impact of “non-dynamic” effects on SRS calculation <\/td>\n<\/tr>\n
85<\/td>\n5.2.6.5 Remarks and limitations
5.2.7 Combined environments
5.2.7.1 Introduction <\/td>\n<\/tr>\n
86<\/td>\n5.2.7.2 Combination of X, Y, Z sine loads
5.2.7.3 Combination of sine and random loads
5.2.7.4 Combination of static and dynamic load cases <\/td>\n<\/tr>\n
88<\/td>\n5.3 Dynamic analysis
5.3.1 Frequency domain analysis
5.3.1.1 Frequency response functions
5.3.1.2 Responses from frequency response functions <\/td>\n<\/tr>\n
89<\/td>\n5.3.1.3 Fundamental frequency response functions <\/td>\n<\/tr>\n
90<\/td>\n5.3.2 Modal approach
5.3.2.1 Introduction
5.3.2.2 Modal effective parameters <\/td>\n<\/tr>\n
93<\/td>\n5.3.2.3 Mode superposition <\/td>\n<\/tr>\n
94<\/td>\n5.3.3 Effective mass models
5.3.3.1 Elaboration of effective mass models
5.3.3.2 Use of effective mass models <\/td>\n<\/tr>\n
95<\/td>\n5.3.4 Craig-Bampton models
5.3.4.1 Modal synthesis <\/td>\n<\/tr>\n
96<\/td>\n5.3.4.2 Craig-Bampton reduction <\/td>\n<\/tr>\n
97<\/td>\n5.3.4.3 Mode displacement method
5.3.4.4 Mode acceleration method <\/td>\n<\/tr>\n
98<\/td>\n5.3.4.5 Modal truncation augmentation method <\/td>\n<\/tr>\n
99<\/td>\n5.3.4.6 Interface loads and CoG accelerations <\/td>\n<\/tr>\n
102<\/td>\n5.3.4.7 Damping <\/td>\n<\/tr>\n
104<\/td>\n5.3.4.8 Equivalent damping methods <\/td>\n<\/tr>\n
106<\/td>\n5.3.4.9 Static and dynamic contributions <\/td>\n<\/tr>\n
107<\/td>\n5.3.4.10 Sensitivity Analysis <\/td>\n<\/tr>\n
108<\/td>\n5.3.4.11 Assembly of condensed models <\/td>\n<\/tr>\n
109<\/td>\n5.4 Coupled analysis and notching in sine tests
5.4.1 FRF coupling <\/td>\n<\/tr>\n
110<\/td>\n5.4.2 Modal approach <\/td>\n<\/tr>\n
111<\/td>\n5.4.3 Simple example <\/td>\n<\/tr>\n
113<\/td>\n5.4.4 Use of the shock response spectrum
5.4.4.1 Introduction
5.4.4.2 Methodology <\/td>\n<\/tr>\n
114<\/td>\n5.4.4.3 Simple example <\/td>\n<\/tr>\n
115<\/td>\n5.4.4.4 LV\/SC example <\/td>\n<\/tr>\n
117<\/td>\n5.5 Primary and secondary notching
5.5.1 Modes concerned by primary notching
5.5.2 Secondary notching <\/td>\n<\/tr>\n
118<\/td>\n5.5.3 Simple example <\/td>\n<\/tr>\n
120<\/td>\n5.5.4 Conclusions on notching in sine tests
5.6 Random tests
5.6.1 Issues on random tests <\/td>\n<\/tr>\n
121<\/td>\n5.6.2 Mechanical equivalence example <\/td>\n<\/tr>\n
123<\/td>\n5.6.3 Notching in random vibration tests <\/td>\n<\/tr>\n
126<\/td>\n5.7 Practical aspects of modal effective masses <\/td>\n<\/tr>\n
128<\/td>\n5.8 Conclusions
5.9 References <\/td>\n<\/tr>\n
131<\/td>\n6 Launcher \/ spacecraft coupled loads analysis
6.1 Introduction
6.1.1 General aspects <\/td>\n<\/tr>\n
132<\/td>\n6.1.2 Launch loads and terminology used in the CLA process <\/td>\n<\/tr>\n
134<\/td>\n6.1.3 The role of the CLA within the loads cycle <\/td>\n<\/tr>\n
135<\/td>\n6.2 The phases of the CLA process
6.2.1 Introduction <\/td>\n<\/tr>\n
136<\/td>\n6.2.2 Parameters driving the CLA process
6.2.3 Mathematical model verification and database integration
6.2.4 Finite element model reduction <\/td>\n<\/tr>\n
137<\/td>\n6.2.5 Checks on the Craig-Bampton matrices and OTM
6.2.6 Frequency cut-off for computed modes
6.2.7 Coupling of the launcher and spacecraft models
6.2.8 Calculation of the generalized responses
6.2.9 Determination of the physical responses
6.2.10 Post-processing <\/td>\n<\/tr>\n
138<\/td>\n6.2.11 Uncertainty factors <\/td>\n<\/tr>\n
139<\/td>\n6.3 CLA output and results evaluation
6.3.1 Overview <\/td>\n<\/tr>\n
140<\/td>\n6.3.2 Guidelines to response parameter selection
6.3.3 Equivalent sine input
6.3.4 Computation of static components from OTM <\/td>\n<\/tr>\n
141<\/td>\n6.3.5 Relative displacements
6.3.6 Interface mechanical fluxes and overfluxes
6.3.6.1 Introduction <\/td>\n<\/tr>\n
142<\/td>\n6.3.6.2 Theoretical interface fluxes and overfluxes <\/td>\n<\/tr>\n
144<\/td>\n6.3.6.3 Clamp band tension assessment <\/td>\n<\/tr>\n
146<\/td>\n6.3.6.4 Example of clamp band assessment
6.3.7 Results review, verification and validation <\/td>\n<\/tr>\n
147<\/td>\n6.3.8 Use of CLA results for structural verification
6.3.9 Reporting <\/td>\n<\/tr>\n
150<\/td>\n6.4 Ariane 5 coupled loads analysis
6.4.1 Introduction to Ariane 5 CLA <\/td>\n<\/tr>\n
151<\/td>\n6.4.2 Mission analysis organization and management <\/td>\n<\/tr>\n
152<\/td>\n6.4.3 CLA events and load cases
6.4.3.1 Overview <\/td>\n<\/tr>\n
154<\/td>\n6.4.3.2 Blast waves – Ariane 5 example <\/td>\n<\/tr>\n
155<\/td>\n6.4.3.3 Boosters pressure oscillations – Ariane 5 example <\/td>\n<\/tr>\n
161<\/td>\n6.4.4 Concomitant events and load cases combination <\/td>\n<\/tr>\n
162<\/td>\n6.4.5 Flight phases and CLA standard load cases
6.4.5.1 Introduction
6.4.5.2 SRB ignition \u2013 Lift-off <\/td>\n<\/tr>\n
163<\/td>\n6.4.5.3 Transonic
6.4.5.4 Third acoustic mode event <\/td>\n<\/tr>\n
164<\/td>\n6.4.5.5 SRB end of flight <\/td>\n<\/tr>\n
165<\/td>\n6.4.5.6 SRB jettisoning
6.4.6 Aspects of the Ariane 5 CLA methodology <\/td>\n<\/tr>\n
167<\/td>\n6.5 The Arianespace spacecraft qualification process
6.5.1 Introduction <\/td>\n<\/tr>\n
168<\/td>\n6.5.2 Quasi-static loads <\/td>\n<\/tr>\n
170<\/td>\n6.5.3 Dynamic environment
6.5.3.1 Overview of the dynamic environment qualification process <\/td>\n<\/tr>\n
171<\/td>\n6.5.3.2 Spacecraft sine tests <\/td>\n<\/tr>\n
173<\/td>\n6.5.3.3 FCLA predictions versus sine test results <\/td>\n<\/tr>\n
174<\/td>\n6.5.3.4 Examples <\/td>\n<\/tr>\n
176<\/td>\n6.6 Space Shuttle coupled loads analysis
6.6.1 Overview <\/td>\n<\/tr>\n
177<\/td>\n6.6.2 CLA load events <\/td>\n<\/tr>\n
178<\/td>\n6.6.3 Elements of the design and verification process for Space Shuttle payloads
6.6.3.1 Coupled loads analysis and load cycles
6.6.3.2 Cargo Element FEM validation process <\/td>\n<\/tr>\n
180<\/td>\n6.6.3.3 Load combination <\/td>\n<\/tr>\n
181<\/td>\n6.7 References <\/td>\n<\/tr>\n
182<\/td>\n7 Static loads
7.1 Introduction
7.2 Quasi-static loads
7.2.1 General aspects <\/td>\n<\/tr>\n
183<\/td>\n7.2.2 Equivalence between dynamic conditions and CoG net accelerations <\/td>\n<\/tr>\n
184<\/td>\n7.2.3 Quasi-static loads specification <\/td>\n<\/tr>\n
186<\/td>\n7.2.4 Prediction of QSL and mechanical environment by base-drive analysis
7.3 Static test philosophy and objectives <\/td>\n<\/tr>\n
187<\/td>\n7.4 Definition of static test configuration and load cases
7.4.1 Introduction <\/td>\n<\/tr>\n
188<\/td>\n7.4.2 Boundary conditions
7.4.3 Loading systems <\/td>\n<\/tr>\n
189<\/td>\n7.4.4 Load cases <\/td>\n<\/tr>\n
190<\/td>\n7.4.5 Instrumentation
7.5 Static test evaluation <\/td>\n<\/tr>\n
192<\/td>\n7.6 References <\/td>\n<\/tr>\n
201<\/td>\n8 Sine vibration
8.1 Introduction
8.2 Sine vibration levels specification
8.2.1 Sine loads for spacecraft <\/td>\n<\/tr>\n
202<\/td>\n8.2.2 Sine loads for payload and equipment <\/td>\n<\/tr>\n
203<\/td>\n8.3 Simulation \/ test prediction
8.3.1 Introduction
8.3.2 Boundary conditions <\/td>\n<\/tr>\n
204<\/td>\n8.3.3 Damping
8.3.4 Notch assessment <\/td>\n<\/tr>\n
205<\/td>\n8.4 Sine vibration test
8.4.1 Objectives <\/td>\n<\/tr>\n
206<\/td>\n8.4.2 Notching process <\/td>\n<\/tr>\n
208<\/td>\n8.4.3 Test preparation
8.4.3.1 Introduction <\/td>\n<\/tr>\n
209<\/td>\n8.4.3.2 Test configuration <\/td>\n<\/tr>\n
210<\/td>\n8.4.3.3 Test sequence <\/td>\n<\/tr>\n
211<\/td>\n8.4.3.4 Test success criteria
8.4.3.5 Instrumentation improvement procedures <\/td>\n<\/tr>\n
213<\/td>\n8.4.3.6 Shaker selection <\/td>\n<\/tr>\n
214<\/td>\n8.4.3.7 Test preparation procedures <\/td>\n<\/tr>\n
221<\/td>\n8.4.4 Sine test campaign
8.4.4.1 Pre-test tasks <\/td>\n<\/tr>\n
222<\/td>\n8.4.4.2 Test data assessment <\/td>\n<\/tr>\n
224<\/td>\n8.4.4.3 Transfer functions and test data exploitation <\/td>\n<\/tr>\n
228<\/td>\n8.4.4.4 Higher level prediction <\/td>\n<\/tr>\n
229<\/td>\n8.4.4.5 Run sheet consolidation <\/td>\n<\/tr>\n
231<\/td>\n8.5 References <\/td>\n<\/tr>\n
232<\/td>\n9 Random vibration and vibro-acoustics
9.1 Introduction
9.1.1 Overview <\/td>\n<\/tr>\n
233<\/td>\n9.1.2 Random vibration loads
9.1.3 Vibro-acoustic loads
9.1.3.1 Acoustic loads specification <\/td>\n<\/tr>\n
235<\/td>\n9.1.3.2 Reverberant sound field <\/td>\n<\/tr>\n
236<\/td>\n9.2 Requirements
9.3 Random vibration specification
9.3.1 Introduction
9.3.2 Component vibration environment predictor, Spann method <\/td>\n<\/tr>\n
238<\/td>\n9.3.3 Specifications derived from random and vibro-acoustic test data
9.3.3.1 Introduction <\/td>\n<\/tr>\n
239<\/td>\n9.3.3.2 Unit random testing <\/td>\n<\/tr>\n
240<\/td>\n9.3.4 VibroSpec
9.3.4.1 Introduction <\/td>\n<\/tr>\n
241<\/td>\n9.3.4.2 Database statistics
9.3.4.3 Example <\/td>\n<\/tr>\n
242<\/td>\n9.3.5 Test\/analysis extrapolation method
9.3.5.1 Introduction
9.3.5.2 Lift-off phase (reverberant noise): <\/td>\n<\/tr>\n
243<\/td>\n9.3.5.3 Transonic phase (boundary layer noise):
9.3.5.4 Empirical random load factors <\/td>\n<\/tr>\n
244<\/td>\n9.4 Random vibration analysis
9.4.1 Finite element analysis and Miles\u2019 equation <\/td>\n<\/tr>\n
245<\/td>\n9.4.2 Finite element analysis <\/td>\n<\/tr>\n
247<\/td>\n9.4.3 Guidelines for FE random vibration response analysis <\/td>\n<\/tr>\n
249<\/td>\n9.5 Random vibration testing
9.5.1 Introduction
9.5.2 Notching
9.5.2.1 Introduction <\/td>\n<\/tr>\n
250<\/td>\n9.5.2.2 Notching of random test levels based on quasi-static design loads <\/td>\n<\/tr>\n
256<\/td>\n9.5.2.3 Force limiting on \u00bd octave with quasi-static criterion <\/td>\n<\/tr>\n
265<\/td>\n9.5.2.4 Semi-empirical force limiting specification: \u201cSemi-empirical method\u201d <\/td>\n<\/tr>\n
266<\/td>\n9.6 Vibro-acoustic analysis
9.6.1 Introduction
9.6.2 Boundary element analysis
9.6.2.1 General aspects <\/td>\n<\/tr>\n
267<\/td>\n9.6.2.2 Simulating a diffuse field as a superposition of a finite number of plane waves
9.6.2.3 Why the use of the boundary element method <\/td>\n<\/tr>\n
268<\/td>\n9.6.2.4 Guidelines for vibro-acoustic response analysis by BE <\/td>\n<\/tr>\n
269<\/td>\n9.6.3 Statistical energy analysis
9.6.3.1 General aspects <\/td>\n<\/tr>\n
271<\/td>\n9.6.3.2 Guidelines statistical energy analysis models <\/td>\n<\/tr>\n
272<\/td>\n9.6.4 General guidelines for vibro-acoustic analyses <\/td>\n<\/tr>\n
274<\/td>\n9.7 Acoustic testing
9.7.1 Introduction
9.7.2 Test plan\/procedure
9.7.2.1 Introduction <\/td>\n<\/tr>\n
275<\/td>\n9.7.2.2 Test sequence
9.7.2.3 Test run specification
9.7.2.4 Input control
9.7.2.5 Sensor data <\/td>\n<\/tr>\n
276<\/td>\n9.8 Verification of compliance
9.8.1 General aspects <\/td>\n<\/tr>\n
277<\/td>\n9.8.2 An example based on the vibration response spectrum <\/td>\n<\/tr>\n
280<\/td>\n9.9 Special topics in random vibration
9.9.1 Simulation of the random time series <\/td>\n<\/tr>\n
283<\/td>\n9.9.2 Prediction of random acoustic vibration of equipment mounted on panels
9.9.2.1 SEA Analysis satellite equipment panel (NASA Lewis Method) <\/td>\n<\/tr>\n
286<\/td>\n9.9.2.2 Panel wave speed, critical frequency and modal density <\/td>\n<\/tr>\n
287<\/td>\n9.9.2.3 Panel radiation efficiency
9.9.3 Quick way to predict fatigue life (Steinberg method) <\/td>\n<\/tr>\n
290<\/td>\n9.10 References <\/td>\n<\/tr>\n
293<\/td>\n10 Shock
10.1 Introduction
10.2 Shock environment <\/td>\n<\/tr>\n
294<\/td>\n10.3 Shock design and verification process <\/td>\n<\/tr>\n
295<\/td>\n10.3.1 Shock input derivation to subsystems <\/td>\n<\/tr>\n
296<\/td>\n10.3.2 Shock verification approach <\/td>\n<\/tr>\n
299<\/td>\n10.3.3 Shock damage risk assessment <\/td>\n<\/tr>\n
302<\/td>\n10.4 References <\/td>\n<\/tr>\n
303<\/td>\n11 Dimensional stability
11.1 Introduction <\/td>\n<\/tr>\n
304<\/td>\n11.2 Dimensional stability analysis <\/td>\n<\/tr>\n
305<\/td>\n11.2.1 Thermo-elastic distortion analysis
11.2.1.1 Introduction
11.2.1.2 Thermo-elastic model verification <\/td>\n<\/tr>\n
306<\/td>\n11.2.1.3 Specific thermo-elastic modelling aspects <\/td>\n<\/tr>\n
308<\/td>\n11.2.1.4 Temperature mapping process <\/td>\n<\/tr>\n
310<\/td>\n11.2.1.5 Thermo-elastic mathematical model correlation <\/td>\n<\/tr>\n
312<\/td>\n11.2.2 1g-0g transition (gravity release) <\/td>\n<\/tr>\n
313<\/td>\n11.2.3 Moisture absorption \/ release <\/td>\n<\/tr>\n
315<\/td>\n11.3 Dimensional stability verification
11.3.1 Introduction
11.3.2 Thermal distortion test
11.3.2.1 General <\/td>\n<\/tr>\n
316<\/td>\n11.3.2.2 Test objectives
11.3.2.3 Test setup and performance <\/td>\n<\/tr>\n
317<\/td>\n11.3.2.4 Deformation measurements <\/td>\n<\/tr>\n
321<\/td>\n11.3.2.5 Post-test activities
11.3.3 Gravity release test <\/td>\n<\/tr>\n
322<\/td>\n11.4 Material property characterisation testing
11.4.1 Coefficient of Thermal Expansion (CTE) characterisation <\/td>\n<\/tr>\n
323<\/td>\n11.4.2 Coefficient of Moisture Expansion (CME) characterisation <\/td>\n<\/tr>\n
324<\/td>\n11.5 References <\/td>\n<\/tr>\n
325<\/td>\n12 Fatigue and fracture control
12.1 Introduction <\/td>\n<\/tr>\n
328<\/td>\n12.2 Definitions
12.3 List of events <\/td>\n<\/tr>\n
332<\/td>\n12.4 Load spectra per event
12.4.1 General
12.4.2 Existing load curves <\/td>\n<\/tr>\n
334<\/td>\n12.4.3 Measured load curves <\/td>\n<\/tr>\n
336<\/td>\n12.4.4 Calculating load curves
12.4.4.1 Introduction <\/td>\n<\/tr>\n
337<\/td>\n12.4.4.2 Calculating the response <\/td>\n<\/tr>\n
338<\/td>\n12.4.4.3 Calculating the number of cycles <\/td>\n<\/tr>\n
339<\/td>\n12.5 Generation of fatigue spectra <\/td>\n<\/tr>\n
341<\/td>\n12.6 References <\/td>\n<\/tr>\n
343<\/td>\n13 Micro-gravity and micro-vibrations
13.1 Introduction
13.1.1 Background <\/td>\n<\/tr>\n
344<\/td>\n13.1.2 Scope
13.2 Micro-gravity <\/td>\n<\/tr>\n
345<\/td>\n13.2.1 General aspects
13.2.1.1 Applicability <\/td>\n<\/tr>\n
347<\/td>\n13.2.1.2 Micro-gravity system requirements definition <\/td>\n<\/tr>\n
351<\/td>\n13.2.1.3 Identification of reference configuration and interfaces to micro-gravity payloads <\/td>\n<\/tr>\n
352<\/td>\n13.2.1.4 Micro-gravity environment control activities <\/td>\n<\/tr>\n
356<\/td>\n13.2.2 Derivation of micro-gravity specifications <\/td>\n<\/tr>\n
357<\/td>\n13.2.2.1 Characterisation of the general structural micro-gravity transfer functions <\/td>\n<\/tr>\n
359<\/td>\n13.2.2.2 Characterisation of the general vibro-acoustic transfer functions <\/td>\n<\/tr>\n
361<\/td>\n13.2.2.3 Definition of the micro-gravity environment control budget <\/td>\n<\/tr>\n
362<\/td>\n13.2.2.4 Definition of the micro-gravity force limits at micro-gravity disturbance sources location <\/td>\n<\/tr>\n
364<\/td>\n13.2.3 Micro-gravity environment verification <\/td>\n<\/tr>\n
365<\/td>\n13.2.3.1 System level micro-gravity environment verification <\/td>\n<\/tr>\n
368<\/td>\n13.2.3.2 Equipment level micro-gravity environment verification <\/td>\n<\/tr>\n
371<\/td>\n13.3 Micro-vibration
13.3.1 General aspects <\/td>\n<\/tr>\n
373<\/td>\n13.3.2 Micro-vibration analysis
13.3.2.1 Introduction
13.3.2.2 Finite element model approach <\/td>\n<\/tr>\n
377<\/td>\n13.3.2.3 Model requirements
13.3.2.4 General micro-vibration analysis flow <\/td>\n<\/tr>\n
378<\/td>\n13.3.2.5 Power approach <\/td>\n<\/tr>\n
379<\/td>\n13.3.2.6 Energy approach <\/td>\n<\/tr>\n
381<\/td>\n13.3.3 Micro-vibration budget assessment
13.3.3.1 Introduction <\/td>\n<\/tr>\n
382<\/td>\n13.3.3.2 Summation rules <\/td>\n<\/tr>\n
383<\/td>\n13.3.3.3 Statistical approach <\/td>\n<\/tr>\n
384<\/td>\n13.3.3.4 Envelope approach
13.3.4 Pointing error synthesis <\/td>\n<\/tr>\n
385<\/td>\n13.3.5 Micro-vibration verification test <\/td>\n<\/tr>\n
386<\/td>\n13.3.5.1 Test setup <\/td>\n<\/tr>\n
387<\/td>\n13.3.5.2 Background noise <\/td>\n<\/tr>\n
388<\/td>\n13.3.5.3 Test execution <\/td>\n<\/tr>\n
389<\/td>\n13.3.5.4 Test data acquisition and evaluation
13.4 Micro-gravity and micro-vibration disturbance sources
13.4.1 Scope
13.4.2 Review of potential disturbance sources <\/td>\n<\/tr>\n
390<\/td>\n13.4.2.1 Disturbance source classification <\/td>\n<\/tr>\n
397<\/td>\n13.4.2.2 General aspects of disturbance attenuation and reduction <\/td>\n<\/tr>\n
400<\/td>\n13.4.3 Characterisation of the disturbance sources forcing functions
13.4.3.1 General aspects <\/td>\n<\/tr>\n
402<\/td>\n13.4.3.2 Determination of the disturbance forcing functions by analytical formulation <\/td>\n<\/tr>\n
425<\/td>\n13.4.3.3 Determination of the disturbance forcing functions by test <\/td>\n<\/tr>\n
437<\/td>\n13.5 References <\/td>\n<\/tr>\n
439<\/td>\n14 Soft stowed packaging
14.1 Introduction <\/td>\n<\/tr>\n
440<\/td>\n14.2 Packaging guidelines <\/td>\n<\/tr>\n
441<\/td>\n14.3 Materials for packaging
14.3.1 Physical properties
14.3.1.1 Introduction <\/td>\n<\/tr>\n
442<\/td>\n14.3.1.2 Minicel <\/td>\n<\/tr>\n
444<\/td>\n14.3.1.3 Pyrell <\/td>\n<\/tr>\n
445<\/td>\n14.3.1.4 Zotek <\/td>\n<\/tr>\n
446<\/td>\n14.3.1.5 Plastazote <\/td>\n<\/tr>\n
447<\/td>\n14.3.1.6 Bubble Wrap
14.3.1.7 Foam safety aspects
14.3.2 Attenuation data for foam packed items
14.3.2.1 Introduction <\/td>\n<\/tr>\n
448<\/td>\n14.3.2.2 Accommodation in hard containers <\/td>\n<\/tr>\n
451<\/td>\n14.3.2.3 Accommodation in strapped Cargo Transfer Bags (CTB) <\/td>\n<\/tr>\n
453<\/td>\n14.4 Soft stowed equipment verification flow
14.4.1 Hardware categories and criticality
14.4.2 General verification aspects
14.4.2.1 Introduction <\/td>\n<\/tr>\n
454<\/td>\n14.4.2.2 Strength verification <\/td>\n<\/tr>\n
458<\/td>\n14.4.3 Off-the-shelf (OTS) items and already existing equipment
14.4.3.1 Introduction
14.4.3.2 Strength verification <\/td>\n<\/tr>\n
459<\/td>\n14.4.3.3 Verification of compatibility with dynamic flight environments <\/td>\n<\/tr>\n
460<\/td>\n14.4.4 New equipment \/ hardware
14.4.4.1 Design of new equipment \/ hardware
14.4.4.2 Qualification of new equipment \/ hardware <\/td>\n<\/tr>\n
465<\/td>\n14.2 References <\/td>\n<\/tr>\n
466<\/td>\n15 Nonlinear structures
15.1 Introduction
15.2 Common spacecraft structure nonlinearities <\/td>\n<\/tr>\n
467<\/td>\n15.2.2 Damping <\/td>\n<\/tr>\n
468<\/td>\n15.2.3 Contact <\/td>\n<\/tr>\n
469<\/td>\n15.2.4 Nonlinear stiffness <\/td>\n<\/tr>\n
470<\/td>\n15.3 Nonlinearity detection <\/td>\n<\/tr>\n
471<\/td>\n15.4 Handling of spacecraft structure nonlinearities
15.4.1 Introduction <\/td>\n<\/tr>\n
472<\/td>\n15.4.2 Guidelines for testing
15.4.2.1 Suitable excitation signals <\/td>\n<\/tr>\n
473<\/td>\n15.4.2.2 Vibration control strategy
15.4.2.3 Test instrumentation <\/td>\n<\/tr>\n
474<\/td>\n15.4.2.4 Data sampling and time recording
15.4.3 Nonlinearity characterisation and parameter estimation <\/td>\n<\/tr>\n
476<\/td>\n15.4.4 Guidelines for structure modelling and analysis
15.4.4.1 Understanding the nonlinear model behaviour <\/td>\n<\/tr>\n
477<\/td>\n15.4.4.2 Model condensation
15.4.4.3 Damping assumptions <\/td>\n<\/tr>\n
479<\/td>\n15.4.4.4 Nonlinear stiffness definition <\/td>\n<\/tr>\n
480<\/td>\n15.4.4.5 Influence of gravity effects
15.4.4.6 Nonlinear stiffness parameters
15.4.4.7 Control simulation <\/td>\n<\/tr>\n
481<\/td>\n15.4.5 Impact of nonlinearities on CLA flight load predictions <\/td>\n<\/tr>\n
483<\/td>\n15.5 References <\/td>\n<\/tr>\n
484<\/td>\n16 Finite element models
16.1 Introduction <\/td>\n<\/tr>\n
485<\/td>\n16.2 Requirements for structure mathematical models
16.3 Introduction to V&V in computational mechanics <\/td>\n<\/tr>\n
488<\/td>\n16.4 Spacecraft finite element model complexity and validation test <\/td>\n<\/tr>\n
489<\/td>\n16.5 Uncertainty quantification during load cycles
16.5.1 Overview
16.5.2 Dynamic variability or uncertainty factor Kv
16.5.2.1 Introduction <\/td>\n<\/tr>\n
490<\/td>\n16.5.2.2 Phase B load criteria development and PDR load cycle
16.5.2.3 CDR load cycle
16.5.2.4 Preliminary verification load cycle <\/td>\n<\/tr>\n
491<\/td>\n16.5.2.5 Final verification load cycle
16.5.3 Model factor KM
16.6 Verification and quality assurance for spacecraft finite element analysis <\/td>\n<\/tr>\n
493<\/td>\n16.7 Mathematical model validation
16.7.1 General concepts and terminology <\/td>\n<\/tr>\n
494<\/td>\n16.7.2 Why a mathematical model validation process <\/td>\n<\/tr>\n
495<\/td>\n16.7.3 Categorization of the uncertainty and sources of disagreement between simulation and experimental outcomes
16.7.4 Specific aspects of the validation of spacecraft FEM for coupled loads analysis
16.7.4.1 Introductory aspects <\/td>\n<\/tr>\n
496<\/td>\n16.7.4.2 Phases of the validation process <\/td>\n<\/tr>\n
498<\/td>\n16.7.4.3 Mode shape correlation <\/td>\n<\/tr>\n
499<\/td>\n16.7.4.4 Correlation criteria <\/td>\n<\/tr>\n
500<\/td>\n16.7.5 Error localization and model updating by sensitivity and optimization
16.7.5.1 Parameter estimation <\/td>\n<\/tr>\n
501<\/td>\n16.7.5.2 Modelling errors and selection of the updating parameters
16.7.5.3 Limitations of the \u201csensitivity and optimisation\u201d approach
16.7.6 Specific aspects concerning base-drive sine vibration testing and \u201creal-time\u201d model validation <\/td>\n<\/tr>\n
502<\/td>\n16.7.7 Stochastic approaches for model validation <\/td>\n<\/tr>\n
503<\/td>\n16.8 References <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

Space engineering. Spacecraft mechanical loads analysis handbook<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
BSI<\/b><\/a><\/td>\n2022<\/td>\n506<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":410518,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2641],"product_tag":[],"class_list":{"0":"post-410511","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-bsi","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/410511","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/410518"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=410511"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=410511"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=410511"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}