{"id":449484,"date":"2024-10-20T09:03:03","date_gmt":"2024-10-20T09:03:03","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/aci-440-2-2023\/"},"modified":"2024-10-26T16:55:17","modified_gmt":"2024-10-26T16:55:17","slug":"aci-440-2-2023","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/aci\/aci-440-2-2023\/","title":{"rendered":"ACI 440.2 2023"},"content":{"rendered":"
Fiber-reinforced polymer (FRP) systems for strengthening concrete structures are an alternative to traditional strengthening techniques such as steel plate bonding, section enlargement, and external post-tensioning. FRP strengthening systems use FRP composite materials as supplemental externally bonded or near-surface-mounted (NSM) reinforcement. FRP systems offer advantages over traditional strengthening techniques: they are lightweight, relatively easy to install, and noncorroding. Due to the characteristics of FRP systems as well as the behavior of members strengthened with FRP, specific guidance on the use of these systems is needed. This guide provides general information on the history and use of FRP strengthening systems; a description of the material properties of FRP; and recommendations on the engineering, construction, and inspection of FRP systems used to strengthen concrete structures. This guide is based on the knowledge gained from experimental research, analytical work, and field applications of FRP systems used to strengthen concrete structures. Keywords: aramid fibers; basalt fibers; bridges; buildings; carbon fibers; corrosion; cracking; development length; earthquake resistance; fiber-reinforced polymers; glass fibers; structural design.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
5<\/td>\n | CHAPTER 1\u2014INTRODUCTION AND SCOPE 1.1\u2014Introduction <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | 1.2\u2014Scope <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | CHAPTER 2\u2014NOTATION AND DEFINITIONS 2.1\u2014Notation <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 2.2\u2014Definitions <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | CHAPTER 3\u2014BACKGROUND INFORMATION 3.1\u2014Historical development 3.2\u2014Commercially available externally bonded FRP systems <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | CHAPTER 4\u2014CONSTITUENT MATERIALS AND\u00a0PROPERTIES 4.1\u2014Constituent materials <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 4.2\u2014Physical properties 4.3\u2014Mechanical properties <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 4.4\u2014Time-dependent behavior <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 4.5\u2014Durability 4.6\u2014FRP systems qualification CHAPTER 5\u2014SHIPPING, STORAGE, AND HANDLING 5.1\u2014Shipping 5.2\u2014Storage <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 5.3\u2014Handling CHAPTER 6\u2014INSTALLATION 6.1\u2014Contractor competency 6.2\u2014Temperature, humidity, and moisture considerations <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 6.3\u2014Equipment 6.4\u2014Substrate repair and surface preparation <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 6.5\u2014Mixing of resins 6.6\u2014Application of FRP systems <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 6.7\u2014Alignment of FRP systems 6.8\u2014Multiple plies and lap splices 6.9\u2014Curing of resins 6.10\u2014Temporary protection CHAPTER 7\u2014FIELD INSPECTION, TESTING, AND\u00a0EVALUATION 7.1\u2014General <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 7.2\u2014Field inspection 7.3\u2014Material testing <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 7.4\u2014Evaluation and acceptance criteria 7.5\u2014 Evaluation of coatings CHAPTER 8\u2014MAINTENANCE AND REPAIR 8.1\u2014General 8.2\u2014Inspection and assessment 8.3\u2014Repair of strengthening system <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 8.4\u2014Repair of surface coating CHAPTER 9\u2014GENERAL DESIGN CONSIDERATIONS 9.1\u2014Design philosophy 9.2\u2014Strengthening limits <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 9.3\u2014Selection of FRP systems <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 9.4\u2014Design material properties <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | CHAPTER 10\u2014FLEXURAL STRENGTHENING 10.1\u2014Nominal strength <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 10.2\u2014Reinforced concrete members <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 10.3\u2014Prestressed concrete members <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 10.4\u2014Moment redistribution CHAPTER 11\u2014SHEAR STRENGTHENING 11.1\u2014General considerations 11.2\u2014Wrapping schemes <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 11.3\u2014Nominal shear strength 11.4\u2014FRP contribution to shear strength <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | CHAPTER 12\u2014STRENGTHENING OF MEMBERS SUBJECTED TO AXIAL FORCE OR COMBINED AXIAL AND BENDING FORCES 12.1\u2014Pure axial compression <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 12.2\u2014Combined axial compression and bending <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 12.3\u2014Ductility enhancement 12.4\u2014Pure axial tension CHAPTER 13\u2014SEISMIC STRENGTHENING <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 13.1\u2014Background 13.2\u2014FRP properties for seismic design 13.3\u2014Confinement with FRP <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 13.4\u2014Flexural strengthening <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 13.5\u2014Shear strengthening 13.6\u2014Beam-column joints <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 13.7\u2014Strengthening reinforced concrete shear walls and wall piers <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | CHAPTER 14\u2014FIBER-REINFORCED POLYMER REINFORCEMENT DETAILS 14.1\u2014Bond, delamination, and anchorage <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 14.2\u2014Detailing of laps and splices <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 14.3\u2014Bond of near-surface-mounted (NSM) systems <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | CHAPTER 15\u2014DRAWINGS, SPECIFICATIONS, AND SUBMITTALS 15.1\u2014Engineering requirements 15.2\u2014Drawings and specifications 15.3\u2014Submittals <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | CHAPTER 16\u2014DESIGN EXAMPLES 16.1\u2014Calculation of FRP system tensile properties 16.2\u2014Comparison of FRP systems\u2019 tensile properties <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 16.3\u2014Flexural strengthening of an interior reinforced concrete beam with FRP <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 16.4\u2014Flexural strengthening of an interior reinforced concrete beam with near-surface-mounted (NSM) FRP bars <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 16.5\u2014Flexural strengthening of an interior prestressed (bonded strands) concrete beam with\u00a0FRP <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | 16.6\u2014Shear strengthening of an interior T-beam <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | 16.7\u2014Shear strengthening of an exterior column 16.8\u2014Strengthening of a noncircular concrete column for axial load increase <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | 16.9\u2014Strengthening of a noncircular concrete column for increase in axial and bending forces <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | 16.10\u2014Plastic hinge confinement for seismic strengthening <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | 16.11\u2014Lap-splice clamping for seismic strengthening <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | 16.14\u2014Flexural strengthening of continuous unbonded prestressed concrete slab with FRP laminates <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | CHAPTER 17\u2014REFERENCES <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | Authored documents <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | APPENDIX A\u2014SUMMARY OF STANDARD TEST METHODS <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | APPENDIX B\u2014AREAS OF FUTURE RESEARCH <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | APPENDIX C\u2014METHODOLOGY FOR COMPUTATION OF SIMPLIFIED P-M INTERACTION DIAGRAM FOR NONCIRCULAR COLUMNS <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" ACI PRC-440.2-23: Design and Construction of Externally Bonded Fiber-Reinforced Polymer (FRP) Systems for Strengthening Concrete Structures – Guide<\/b><\/p>\n |