{"id":450579,"date":"2024-10-20T09:12:05","date_gmt":"2024-10-20T09:12:05","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iec-ts-62898-3-22024\/"},"modified":"2024-10-26T17:09:39","modified_gmt":"2024-10-26T17:09:39","slug":"bsi-pd-iec-ts-62898-3-22024","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iec-ts-62898-3-22024\/","title":{"rendered":"BSI PD IEC TS 62898-3-2:2024"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 1 Scope <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 2 Normative references <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 3 Terms, definitions and abbreviated terms 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 3.2 Abbreviated terms 4 General 4.1 System architecture and functional mapping <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | Figures Figure 1 \u2013 Conceptual map of a power system consisting of a microgrid Figure 2 \u2013 Functional mapping for operation and control of microgrids <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 4.2 Stand-alone MEMS 4.3 Integrated MEMS 4.4 Communication protocols and cyber security 4.4.1 Basic principle 4.4.2 Recommended methods <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | Figure 3 \u2013 Typical three-layer communication for structure 1 <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 4.4.3 Cyber security 4.5 Overview of MEMS function requirement Figure 4 \u2013 Typical two-layer communication for structure 2 <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | Figure 5 \u2013 Microgrid energy management system functional architecture <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 5 Functional requirements 5.1 Dispatch optimization 5.1.1 Dispatch and scheduling models <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 5.1.2 Dispatch optimization modes and objective functions <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 5.1.3 Management of technical constraint conditions <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 5.1.4 Optimization types and approaches <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 5.2 Forecast function 5.2.1 General 5.2.2 Forecasting requirements and time dimension <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 5.2.3 Renewable power generation forecast 5.2.4 Load forecast 5.2.5 Electricity price forecast 5.2.6 Input values of forecast <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 5.3 Demand side integration 5.3.1 General 5.3.2 Demand side management 5.3.3 Demand side response <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 5.3.4 Energy optimisation 5.3.5 Power and energy exchange with upstream grid 5.4 Flexible resource management 5.4.1 General <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 5.4.2 Controllable load management 5.4.3 Energy management 5.5 Data archiving, trending and reporting 5.6 Market trading module (ancillary services) and market data <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | Annex A (informative)Examples of actual microgrid application casesintegrated with associated functions of MEMS A.1 General A.2 Application CN1: Obtaining lower energy cost, lower pollution emission, and higher penetration level of renewable energy A.2.1 Overview A.2.2 System structure <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | A.2.3 Energy management system A.2.4 Energy management system operation Figure A.1 \u2013 The main single diagram of Goldwind microgrid <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | A.3 Application CN2: Enhancing local power supply reliability for critical loads with AC\/DC hybrid microgrid A.3.1 Overview Figure A.2 \u2013 Application of EES for wind generation and load matching <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | A.3.2 System structure A.3.3 Energy management strategy Figure A.3 \u2013 Electric network topology of Shangyu AC\/DC microgrid <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | A.3.4 Operation modes A.3.5 Black start <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | A.3.6 Energy management strategy A.3.7 Operation modes Tables Table A.1 \u2013 Operation modes <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | A.3.8 Black start A.4 Application DE1: Intelligent, data-driven, and grid stabilizing energy management platform \u2013 Developing a pilot for industrial diesel application A.4.1 Overview <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | A.4.2 System structure \u2212 IDGE Platform Figure A.4 \u2013 Basic structure of the IDGE Platform <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | Figure A.5 \u2013 Functional requirements <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | A.4.3 Energy management strategy Figure A.6 \u2013 Interplay of Layer 1 and Layer 2 <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Figure A.7 \u2013 Model reaction <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | A.4.4 Demonstrator and evaluation Figure A.8 \u2013 Technical platform layout <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | A.5 Application CN4: Electrifying islands with wind-PV-diesel-energy storage and hybrid microgrids A.5.1 Overview Figure A.9 \u2013 Dong\u2019ao Island microgrid network topology <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | A.5.2 Purpose A.5.3 Main functions of MEMS A.5.4 Applications Figure A.10 \u2013 Guishan Island Microgrid network topology <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | A.6 Application CN5: Optimizing local energy resources with demand side integrated microgrid including PV and energy storage A.6.1 Overview A.6.2 Purpose A.6.3 Main functions of MEMS Figure A.11 \u2013 Snapshot of active power and reactive powersharing among diesel generator Table A.2 \u2013 Description of the microgrids <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | A.6.4 Applications Figure A.12 \u2013 Solar power and load forecasting in Foshan industrial microgrid Figure A.13 \u2013 Example of power generation and consumption detailed on a particular day in Foshan industrial microgrid <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | A.7 Application JP1: Local independent grid supplied by an energy production system of combining biomass, biogas, wood chip co-firing, photovoltaic and small wind power: the Hachinohe demonstration project from Japan A.7.1 Overview Figure A.14 \u2013 Air conditioner power consumption and space temperaturefor a particular user in Guangzhou residential microgrid <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | A.7.2 Purpose A.7.3 Main functions of the control system Figure A.15 \u2013 Overview of Hachinohe demonstration project <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | A.7.4 Applications Figure A.16 \u2013 Hierarchical structure of the energy management system Figure A.17 \u2013 Performances for grid connected operation: deviation from planned flow <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Figure A.18 \u2013 Obtained success rate of maintaining frequency and voltage Table A.3 \u2013 Description of the microgrids <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | A.8 Application JP2: Islanding operation of microgrid with only converter connected resources and no-rotating machine: the 2005 World Exposition, Aichi, from Japan A.8.1 Overview Figure A.19 \u2013 Overall performance under different battery operation modes <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | A.8.2 Purpose Figure A.20 \u2013 Overview of equipment configuration Figure A.21 \u2013 Appearance of equipment <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | A.8.3 Main functions of the control system Figure A.22 \u2013 PAFC system configuration <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | A.8.4 Applications Figure A.23 \u2013 Block diagram for isolated operation <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | A.9 Application JP3: Grasping the impact of mass solar power generation on the actual power system and empirical research on system stabilization measures using storage batteries: Miyakojima Mega Solar Demonstration Research A.9.1 Overview Figure A.24 \u2013 Power quality (voltage and frequency on Oct. 11th) <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | Figure A.25 \u2013 Overview of the Miyakojima island power system Table A.4 \u2013 Outline of the facility <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | Figure A.26 \u2013 Overview of the demonstration research facility <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | A.9.2 Purpose A.9.3 Main functions of the control system A.9.4 Applications Figure A.27 \u2013 Picture of the demonstration research facility <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | Figure A.28 \u2013 Result of the PV + NaS storage long term operation Figure A.29 \u2013 NaS storage operation for short term power fluctuation levelling <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | Figure A.30 \u2013 Example of output fluctuation suppression effect <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | A.10 Application IN1: Microgrid dedicated for energy communities on a public distribution grid: Shakti demonstration in H2020 IElectrix project A.10.1 Overview Figure A.31 \u2013 Image of frequency fluctuation suppression effect <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | A.10.2 Purpose A.10.3 Main functions of the MEMS Figure A.32 \u2013 SHAKTI pilot architecture <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | Figure A.33 \u2013 Microgrid SCADA example Figure A.34 \u2013 Example of PV monitoring in the EMS <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | A.10.4 Cybersecurity A.10.5 Additional applications Figure A.35 \u2013 Example of off-grid mode preparation <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | A.11 Application QAT1: Desert microgrid, research microgrid in desert environment, education city Doha, Qatar A.11.1 Overview A.11.2 System description Figure A.36 \u2013 Electric network topology of the Desert-\u03bcGrid <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | A.11.3 Energy management system (EMS) A.11.4 Operational modes Figure A.37 \u2013 Energy management system of the Desert-\u03bcGrid <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Annex B (informative)Communication and data exchange B.1 Information exchange and MEMS B.2 EMS-API reference model (IEC 61970-1) Table B.1 \u2212 Examples of information exchange <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | B.3 Architecture of the communication system Figure B.1 \u2013 EMS-API reference model <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | Figure B.2 \u2013 Reference architecture based on IEC TR 62357-1 <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Microgrids – Technical requirements. Energy management systems<\/b><\/p>\n |