{"id":458294,"date":"2024-10-20T09:55:59","date_gmt":"2024-10-20T09:55:59","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-iec-61000-5-62024-tc\/"},"modified":"2024-10-26T18:28:21","modified_gmt":"2024-10-26T18:28:21","slug":"bs-iec-61000-5-62024-tc","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-iec-61000-5-62024-tc\/","title":{"rendered":"BS IEC 61000-5-6:2024 – TC"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
105<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | 1 Scope 2 Normative references 3 Terms, definitions and abbreviated terms 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | 3.2 Abbreviated terms 4 Overview and general considerations 4.1 Overview <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | 4.2 General considerations 4.2.1 Elementary interference control 4.2.2 Shields and interfaces Figures Figure 1 \u2013 System barrier topology <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | 5 Mitigation of radiated and conducted disturbances 5.1 Topological concepts Figure 2 \u2013 Generalized system topology <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | 5.2 Mitigation needs 5.3 The general concept of enclosure <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | 5.4 Interactions at the enclosure boundary 6 Shielding 6.1 General Figure 3 \u2013 Ports of an apparatus or facility <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | Figure 4 \u2013 Topological concept of shields with interfaces at penetration points <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | 6.2 Classification of protection zones 6.2.1 General Figure 5 \u2013 Zones of protection of shielding and earthing systems <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | 6.2.2 Zone 1 \u2013 Building shield 6.2.3 Zone 2 \u2013 Room shield 6.2.4 Zone 3 \u2013 Equipment shield 6.2.5 Zone 4 \u2013 Apparatus shield 6.3 Design principles for screening 6.3.1 General <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | 6.3.2 Shielding effectiveness 6.3.3 Maintaining shielding effectiveness <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | 6.4 Implementation of screening 6.4.1 General 6.4.2 Sensitive apparatus 6.4.3 Shielding of racks and chassis (zones 4\/3 barrier) 6.4.4 Shielding of cabinets (zones 3\/2 barrier) 6.4.5 Shielding of rooms (zones 2\/1 barrier) <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | 6.4.6 Shielding of buildings (zones 1\/0 barrier) Figure 6 \u2013 Example of performance of high-efficiency shielded enclosure Tables Table 1 \u2013 Measured shielding effectiveness of a 2 m \u00d7 2 m cage madeof concrete building armour, against a 20 ns rise-time pulse(equivalent frequency less than 20 MHz) <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | 6.4.7 Dealing with apertures Figure 7 \u2013 Honeycomb inserts for different cut-off frequencies <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | Figure 8 \u2013 Typical screening attenuation of honeycomb inserts <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | 7 Filters 7.1 General <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | 7.2 Fundamental filter characteristics 7.2.1 General 7.2.2 Attenuation and insertion loss Figure 9 \u2013 Parameters for attenuation and insertion loss <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | 7.2.3 Basic types of filters <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | 7.3 Functional tasks Figure 10 \u2013 Prevention of interference on installed equipment Figure 11 \u2013 Reduction of electromagnetic disturbancesin the power network and the environment <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | 7.4 Additional filtering concerns 7.4.1 Technical aspects 7.4.2 Economic aspects <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | 7.5 Selection criteria 7.5.1 General 7.5.2 Voltage rating 7.5.3 Current rating 7.5.4 Duty-cycle and overload operating conditions <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | 7.5.5 Operating frequency and range of frequencies to be filtered 7.5.6 Voltage drop and signal loss 7.5.7 Ambient temperature range 7.5.8 Insertion loss and attenuation <\/td>\n<\/tr>\n | ||||||
141<\/td>\n | 7.5.9 Withstand voltage 7.5.10 Attenuation of HF transient disturbances 7.5.11 Leakage current to protective earthing conductor Figure 12 \u2013 Examples of insertion loss characteristics of AC\/DC power port filters <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | 7.5.12 Permissible reactive current 7.6 Filter installation 7.6.1 General 7.6.2 Installation and mounting techniques <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | 7.6.3 Wiring 7.6.4 Installation of cabinet filters Figure 13 \u2013 Mounting of filters Figure 14 \u2013 Connection of screened cables <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | 7.7 Filter testing 7.7.1 General considerations Figure 15 \u2013 Example of integration of filters inside an equipment cabinet Figure 16 \u2013 Example of filter mounting in a dedicated unit <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | 7.7.2 Insulation to earth and withstand voltage of installed filters 7.7.3 Insertion loss 7.7.4 Attenuation of HF transient disturbances <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | 8 Decoupling devices 8.1 Isolation transformers Figure 17 \u2013 Laboratory measurement showing the propagation of a 0,5 \u03bcs to 100 kHz ring wave, applied in differential mode, through an ordinary isolation transformer <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | Figure 18 \u2013 Propagation of a 0,5 \u03bcs to 100 kHz ring wave operatingin the differential mode through a “line isolator” transformer Figure 19 \u2013 Inter-winding coupling in an isolation transformer <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | 8.2 Motor-generator sets 8.3 Engine generators 8.4 Uninterruptible power supply (UPS) <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | 8.5 Optical links 9 Surge-protective devices 9.1 General <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | 9.2 Direct equipment protection <\/td>\n<\/tr>\n | ||||||
151<\/td>\n | 9.3 Installation of multiple SPDs <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | 9.4 Side-effects of uncoordinated cascades 9.5 Typical protective devices 9.5.1 General 9.5.2 Voltage-limiting type SPDs 9.5.3 Voltage-switching type SPDs <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | Annex A (informative)Resilience-based approach for the mitigation ofexternal high-power electromagnetic environments A.1 Overview A.2 The concept of resilience A.2.1 General <\/td>\n<\/tr>\n | ||||||
154<\/td>\n | A.2.2 Discussion on the protection-led approach Figure A.1 \u2013 Protection-led approach Figure A.2 \u2013 Resilience-based approach <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | A.2.3 Benefits of a resilience-based approach A.2.4 Affordability and risk Table A.1 \u2013 Protection levels based on operational criticality <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | A.2.5 Appropriate application of a resilience-based approach Table A.2 \u2013 Appropriate application of the resilience-based approach <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | A.3 EM resilience model and framework A.3.1 General A.3.2 Identify function A.3.3 Protect function Figure A.3 \u2013 The five functions of the NIST cyber security framework <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | A.3.4 Detect function A.3.5 Respond function A.3.6 Recover function A.3.7 Adaptation of the NIST framework to HPEM resilience A.4 HPEM resilience framework implementation A.4.1 Overview A.4.2 Identify <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | Table A.3 \u2013 Identify function of the HPEM resilience framework <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | A.4.3 Protect <\/td>\n<\/tr>\n | ||||||
161<\/td>\n | Table A.4 \u2013 Protect function of the HPEM resilience framework <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | Figure A.4 \u2013 Protection scheme utilising shielded cables and shielded cabinets <\/td>\n<\/tr>\n | ||||||
165<\/td>\n | A.4.4 Detect Table A.5 \u2013 Detect function of the HPEM resilience framework <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | Table A.6 \u2013 Some advantages and limitations of different technologiesfor HPEM detection applications <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | Figure A.5 \u2013 IEMI detector developed by Fraunhofer INT, Germany <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | Figure A.6 \u2013 TOTEM detector developed by QinetiQ ltd., UK <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | Figure A.7 \u2013 Example of some HPEM events detected during a field-trial installation <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | A.4.5 Respond Table A.7 \u2013 Respond function of the HPEM resilience framework <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | A.4.6 Recover A.5 Summary Table A.8 \u2013 Recover function of the HPEM resilience framework <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Tracked Changes. Electromagnetic compatibility (EMC) – Installation and mitigation guidelines. Mitigation of external EM influences<\/b><\/p>\n |