BSI PD 6688-1-4:2015 – TC:2020 Edition
$280.87
Tracked Changes. Background information to the National Annex to BS EN 1991-1-4 and additional guidance
Published By | Publication Date | Number of Pages |
BSI | 2020 | 201 |
PDF Catalog
PDF Pages | PDF Title |
---|---|
104 | Foreword |
106 | Introduction 1 Scope 2 UK National Annex to BS EN 1991-1-4:2005 |
107 | Figure 1 An example of altitude correction factors |
109 | Figure 2 Hill parameters in undulating terrain |
116 | 3 Data that can be used in conjunction with BS EN 1991-1-4:2005 |
117 | Figure 3 Typical examples of buildings with re-entrant corners and recessed bays |
118 | Figure 4 Examples of flush irregular walls |
119 | Figure 5 Keys for walls of inset storey |
120 | Figure 6 Key for inset storey Figure 7 Key to canopies attached to buildings Table 1 Global vertical force coefficients for canopies attached to tall buildings |
121 | Table 2 Internal pressure coefficients cpi for open-sided buildings Table 3 Internal pressure coefficients cpi for open-topped vertical cylinders |
122 | Figure 8 Wind directions for a rectangular plan building |
124 | Figure 9 Key for vertical walls of buildings Figure 10 Definitions of crosswind breadth and in wind depth Table 4 External pressure coefficients Cpe for vertical walls of rectangular-plan buildings |
125 | Table 5 Reduction factors for zone A on vertical walls of polygonal‑plan buildings |
126 | Annex A (informative) Vortex shedding and aeroelastic instabilities |
129 | Table A.1 Strouhal numbers St for different cross-sections |
130 | Figure A.1 Strouhal number St for rectangular cross-sections with sharp corners Figure A.2 Strouhal number St for bridge decks |
132 | Figure A.3 Bridge types and reference dimensions |
133 | Figure A.4 Bridge deck details |
136 | Table A.2 Basic value of the lateral force coefficient clat,0 for different cross-sections |
137 | Figure A.5 Basic value of the lateral force coefficient clat,0 versus Reynolds number Re(vcrit,i) Table A.3 Lateral force coefficient clat versus critical wind velocity ratio vcrit,i/vm,Lj |
138 | Figure A.6 Examples for application of the correlation length Lj (j = 1, 2, 3) |
139 | Table A.4 Effective correlation length Lj as a function of vibration amplitude yF(sj) |
140 | Table A.5 Correlation length factor KW and mode shape factor K for some simple structures |
142 | Figure A.7 In-line and grouped arrangements of cylinders |
144 | Table A.6 Constants for determination of the effect of vortex shedding |
147 | Table A.7 Assessment of vortex excitation effects |
149 | Table A.8 Factor of galloping instability aG |
150 | Table A.9 �Data for the estimation of crosswind response of coupled cylinders at in-line and grouped arrangements |
153 | Figure A.8 Geometric parameters for interference galloping |
154 | Figure A.9 �Rate of change of aerodynamic moment coefficient dcM/dθ with respect to geometric centre “GC” for rectangular section |
157 | Annex B (informative) Along-wind response of lattice towers |
159 | Figure B.1 Gust peak factor (Davenport’s g) Table B.1 �Length scale zLu for a single roughness change from sea to country terrain, for an upwind fetch from site to sea of x(km) |
161 | Figure B.2 Definition of fetch for two roughness changes Table B.2 Length scale for zLu for two roughness changes where x1 = 0,1 km for an upwind fetch of x km |
162 | Table B.3 Length scale for zLu for two roughness changes where x1 = 0,3 km for an upwind fetch of x km Table B.4 Length scale for zLu for two roughness changes where x1 = 1 km for an upwind fetch of x km |
163 | Table B.5 Length scale for zLu for two roughness changes where x1 = 3 km for an upwind fetch of x km Table B.6 Length scale for zLu for two roughness changes where x1 = 10 km for an upwind fetch of x km |
164 | Table B.7 Length scale for zLu for two roughness changes where x1 = 30 km for an upwind fetch of x km |
165 | Figure B.3 Fictitious square lattice tower with 12 panels |
166 | Table B.8 Meteorological parameters |
167 | Table B.9 Non‑dimensional coefficients, wind forces and wind moments |
168 | Table B.10 Values of c(z) c(z’) |
169 | Table B.11 Values of C(z‑z’) Table B.12 Values of c(z) c(z’) C(z‑z’) |
171 | Table B.13 Non‑dimensional coefficients and wind forces |
172 | Table B.14 Values of c(z) c(z’) Table B.15 Values of c(z) c(z’) C(z‑z’) |
173 | Table B.16 Non‑dimensional coefficients, wind forces and moments |
175 | Table B.17 Values of c(z) c(z’) |
176 | Table B.18 Values of C(z‑z’) Table B.19 Values of c(z) c(z’) C(z‑z’) |
178 | Table B.20 Non‑dimensional coefficients and wind forces |
179 | Table B.21 Values of c(z) c(z’) Table B.22 Values of c(z) c(z’) C(z‑z’) |
181 | Table B.23 Non‑dimensional coefficients and wind forces |
182 | Figure B.4 Illustration of parameters for shear patch loading |
183 | Table B.24 Lever arms, wind loads and moments above zip Table B.25 Lever arms, wind loads and moments below zip |
185 | Table B.26 Values of c(z) c(z’) |
186 | Table B.27 Valuesof C(z‑z’) Table B.28 Values of c(z) c(z’) C(z‑z’) |
188 | Table B.29 Meteorological parameters Table B.30 Non‑dimensional coefficients, wind forces and wind moments |
190 | Table B.31 Values of c(z) c(z’) |
191 | Table B.32 Values of C(z‑z’) Table B.33 Values of c(z) c(z’) C(z‑z’) |
193 | Table B.34 Large ancillary wind resistance |
195 | Bibliography |