Shopping Cart

No products in the cart.

BS EN 13757-8:2023

$215.11

Communication systems for meters – Adaptation layer

Published By Publication Date Number of Pages
BSI 2023 76
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. Weā€™re here to assist you 24/7.
Email:[email protected]

This document describes the functionalities and specifies the requirements of an adaptation layer to be applied when transporting M-Bus upper layers using a wireless communication protocol other than wireless M-Bus. These alternative radio technologies developed outside CEN/TC 294 can be based on Internet Protocol or not and operate either in licensed or unlicensed frequency bands.

PDF Catalog

PDF Pages PDF Title
2 undefined
6 European foreword
7 Introduction
8 1 Scope
2 Normative references
3 Terms and definitions
9 4 Abbreviations and symbols
4.1 Abbreviations
11 4.2 Symbols
5 Network architecture
5.1 Overview
12 Figure 1 ā€” LPWAN network architecture overview
5.2 General description of network entities
5.2.1 Head End System
5.2.2 Core network
5.2.2.1 Network manager
13 5.2.2.2 Security server
5.2.3 Gateway
5.2.4 End device
14 Figure 2ā€” End device LPWAN identifier and application address relations
6 General layer structure
6.1 Overview
15 Table 1 ā€” General layer structure
6.2 Encapsulation schemes
6.2.1 M-Bus over non-IP based communication technologies
16 Table 2 ā€” M-Bus over non-IP LPWAN encapsulation
6.2.2 M-Bus over IP based communication technologies
Table 3 ā€” M-Bus over IP-based LPWAN encapsulation
17 7 Adaptation layer description
7.1 Adaptation layer structure
Table 4 ā€” CI-fields of MBAL
Table 5 ā€” Structure of M-Bus Adaption layer with CI-field CFh
7.2 Adaptation layer services
7.2.1 MBAL Control field (MBAL-CL)
7.2.1.1 Structure of MBAL Control field
18 Table 6 ā€” MBAL Control field in uplink
Table 7 ā€” MBAL Control field in downlink
7.2.1.2 Subfield Version
Table 8 ā€” MBAL-CL Version subfield
7.2.1.3 Subfield Access (uplink)
19 Table 9 ā€” MBAL-CL Access subfield
7.2.1.4 Subfield Latency (downlink)
Table 10 ā€” MBAL-CL Latency subfield
7.2.1.5 Subfield Function code
20 Table 11 ā€” MBAL-CL Function code subfield (uplink)
21 Table 12 ā€” MBAL-CL Function code subfield (downlink)
7.2.2 Other MBAL fields
22 Annex A (informative) Overview of LPWAN technologies
A.1 LPWAN features for metering communication
A.2 Segregation matrix
Table A.1 ā€” LPWAN technologies comparison matrix
23 Annex B (informative) MBAL implementation examples
B.1 MBAL for alarm data pulling scenario
Figure B.1 ā€” M-Bus alarm data pulling using MBAL
B.2 MBAL for user data push and pull
24 Figure B.2 ā€” M-Bus user data push and pull using MBAL
B.3 Confirmed User Data transmission
Figure B.3 ā€” Confirmed user data transmission with MBAL
25 Annex C (informative) Adaptation mechanism for Cat. NB (NB-IoT) and Cat. M1 (LTE-M)
C.1 Cat. M1 and Cat. NB brief description
C.2 Cat. M1 and Cat. NB characteristics
Table C.1 ā€” Comparison of Cat. M1 and Cat. NB as defined in 3GPP Release 13/14 [8]
C.3 Cat. M1 and Cat. NB network architecture
C.3.1 General introduction
26 C.3.2 Architecture overview
Figure C.1 ā€” Simple architecture overview for an LTE network
C.3.3 CIoT main features and access methods
C.3.3.1 CIoT EPS optimizations
27 C.3.3.2 Power saving mode
Figure C.2 ā€” PSM and TAU mechanisms chronogram illustration
C.3.3.3 Extended discontinuous reception
28 Figure C.3 ā€” eDRX feature chronogram illustration
C.4 M-Bus over CIoT
C.4.1 Overview
C.4.2 Basic M-Bus over CIoT mechanism
C.4.2.1 Overview
29 Table C.2 ā€” Basic M-Bus over CIoT protocol stack using DoNAS
C.4.2.2 Basic M-Bus over CIoT
Table C.3 ā€” MBAL with CI-field in UDP Payload
C.4.3 Advanced M-Bus over CIoT
C.4.3.1 M-Bus over CIoT model using transfer level security
30 Table C.4 ā€” Protocol stack used for lightweight IP based communication including COSE security
C.4.3.2 Connection establishment
C.4.3.2.1 General
31 Figure C.4 ā€” Unsolicited end-to-end data example
Figure C.5 ā€” Unsolicited data transfer attacked with hostile response attempt
32 Figure C.6 ā€” Two-way communication sequence CoAP elements
C.4.3.2.2 Introduction
33 C.4.3.2.3 Port number
C.4.3.2.4 Datagram format
Table C.5 ā€” CoAP datagram format
C.4.3.2.5 Header
Table C.6 ā€” CoAP message format (from [5])
34 Table C.7 ā€” Mandatory CoAP header parameters
35 Table C.8 ā€” Option parameters for enabling the content
C.4.3.2.6 Payload
C.4.3.2.6.1 General
C.4.3.2.6.2 COSE/CBOR
C.4.3.2.6.3 Payload organization
Table C.9 ā€” The CoAP payload
36 Table C.10 ā€” The CoAP payload (COSE_Encrypt0 formatted) consists of organized CBOR objects
C.4.3.2.6.4 Protected and unprotected header
C.4.3.2.6.5 Protected header parameters
Table C.11 ā€” Protected header parameters
C.4.3.2.6.6 Unprotected header parameters
37 Table C.12 ā€” Unprotected header parameters
Table C.13 ā€” kid COSE header parameters as a CBOR map
38 C.4.3.3 CBOR defined MBAL and payload content
C.4.3.3.1 General
C.4.3.3.2 Message content
Table C.14 ā€” Overview of currently supported protocol identifications and protocol revisions
C.4.3.3.3 CBOR payload content
C.4.3.3.3.1 General
39 Table C.15 ā€” Payload components
C.4.3.3.3.2 MBAL field
Table C.16 ā€” MBAL Component
Table C.17 ā€” MBAL subfield CBOR elements
40 C.4.3.4 Examples of implementation
C.4.3.4.1 Security – COSE Content encryption/authentication
Table C.18 ā€” CCM authenticated encryption algorithm overview
41 Table C.19 ā€” IV example for an M-Bus device
C.4.3.4.2 Services and parameters
42 C.4.3.4.3 Communication sequences / scenarios
C.4.3.4.3.1 General
C.4.3.4.3.2 Uni-directional end-to-end examples
43 Figure C.7 ā€” Uni-directional unsolicited messages from end device without CoAP reliability
44 Figure C.8 ā€” Unsolicited messages from end device with CoAP reliability
45 Figure C.9 ā€” Install scenario without HES acknowledgement (CNF-IR)
C.4.3.4.3.3 Two-way examples
47 Figure C.10 ā€” SND-UD2/RSP-UD scenario. CoAP reliability exploited
48 Figure C.11 ā€” SND-UD2/RSP-UD scenario (continued)
49 Annex D (informative) Adaptation mechanism for LoRaWAN
D.1 LoRaWAN brief description
D.2 LoRaWAN network architecture
D.2.1 Overview
D.2.2 Application server
50 D.2.3 End device
D.2.4 Gateways
D.2.5 Core network
D.2.5.1 Network server
D.2.5.2 Join server
51 Figure D.1 ā€” LoRaWAN network architecture and over the air activation mechanism
D.3 LoRaWAN security services description
52 D.4 LoRaWAN main features
D.5 LoRaWAN frame structure overview
Table D.1 ā€” LoRaWAN frame structure overview
53 Table D.2 ā€” LoRaWAN frame control byte structure
D.6 M-Bus over LoRaWAN
D.6.1 M-Bus upper layers encapsulation in LoRaWAN
54 Table D.3 ā€” M-Bus over LoRaWAN frame structure
D.6.2 LoRaWAN and MBAL co-operation
D.6.2.1 End device access and operation classes
55 Table D.4 ā€” End device access mapped to LoRaWAN Class
D.6.2.2 Acknowledgement
D.6.2.3 Pending downlinks
D.6.3 Implementation examples
D.6.3.1 Overview
56 D.6.3.2 M-Bus over LoRaWAN installation procedure
Figure D.2 ā€” M-Bus over LoRaWAN installation procedure
D.6.3.3 M-Bus over LoRaWAN for alarm data pulling
57 Figure D.3 ā€” M-Bus over LoRaWAN for alarm data pulling using MBAL
D.6.3.4 M-Bus over LoRaWAN for User data push and pull
58 Figure D.4 ā€” M-Bus over LoRaWAN for user data push and pull
59 Annex E (informative) Adaptation mechanism for TS-UNB
E.1 TS-UNB/MIOTY brief description
E.2 MIOTY network architecture
E.2.1 Overview
Figure E.1 ā€” Network architecture according to ETSI LTN with TS-UNB air interface
60 E.2.2 Service center
E.2.3 End-point
E.2.4 Base station
E.3 MIOTY principles
E.3.1 Device classes
E.3.2 Scheduling and acknowledgement
61 Figure E.2 ā€” Uplink/Downlink scheduling and acknowledgement
E.4 MIOTY frame structure overview
62 Table E.1 ā€” MIOTY frame structure
E.5 M-Bus over MIOTY
E.5.1 Encapsulation of M-Bus
63 Table E.2 ā€” MPF values for M-Bus
Table E.3 ā€” M-Bus Data Payload
E.5.2 MIOTY and MBAL co-operation
E.5.2.1 End-point access and device classes
64 Table E.4 ā€” End-point access mapped to device class
E.5.2.2 End-point latency
E.5.2.3 Acknowledgement
E.5.3 Implementation example
E.5.3.1 General
65 E.5.3.2 M-Bus over MIOTY command workflow
Figure E.3 ā€” Command workflow for M-Bus over MIOTY
66 Annex F (informative) Adaptation mechanism for Wize
F.1 Wize brief description
F.2 Wize services
67 F.3 Wize network architecture
F.3.1 Overview
Figure F.1 ā€” Wize LPWAN network general architecture
F.3.2 Uplink broadcast
68 F.3.3 Downlink unicast
F.3.4 Downlink broadcast
F.3.5 Wize message types and message flow
Table F.1 ā€” Wize protocol message types and flow
69 Figure F.2 ā€” Wize message flow
70 F.3.6 Wize security services and management
71 Figure F.3 ā€” Wize protocol security services overview
F.3.7 Wize Data Link Layer (DLL)
Table F.2 ā€” Wize DLL
Table F.3 ā€” L6 frame of the Wize protocol
72 F.4 M-Bus over Wize
F.4.1 Overview
Table F.4 ā€” Protocol layer structure for transporting M-Bus over Wize
Table F.5 ā€” M-Bus over Wize using MBAL encapsulation overview
F.4.2 MBAL with CI-field
73 Table F.6 ā€” MBAL-CL function code mapping to Wize DLL
74 Bibliography
BS EN 13757-8:2023
$215.11