BS EN 13757-8:2023
$215.11
Communication systems for meters – Adaptation layer
Published By | Publication Date | Number of Pages |
BSI | 2023 | 76 |
This document describes the functionalities and specifies the requirements of an adaptation layer to be applied when transporting M-Bus upper layers using a wireless communication protocol other than wireless M-Bus. These alternative radio technologies developed outside CEN/TC 294 can be based on Internet Protocol or not and operate either in licensed or unlicensed frequency bands.
PDF Catalog
PDF Pages | PDF Title |
---|---|
2 | undefined |
6 | European foreword |
7 | Introduction |
8 | 1 Scope 2 Normative references 3 Terms and definitions |
9 | 4 Abbreviations and symbols 4.1 Abbreviations |
11 | 4.2 Symbols 5 Network architecture 5.1 Overview |
12 | Figure 1 ā LPWAN network architecture overview 5.2 General description of network entities 5.2.1 Head End System 5.2.2 Core network 5.2.2.1 Network manager |
13 | 5.2.2.2 Security server 5.2.3 Gateway 5.2.4 End device |
14 | Figure 2ā End device LPWAN identifier and application address relations 6 General layer structure 6.1 Overview |
15 | Table 1 ā General layer structure 6.2 Encapsulation schemes 6.2.1 M-Bus over non-IP based communication technologies |
16 | Table 2 ā M-Bus over non-IP LPWAN encapsulation 6.2.2 M-Bus over IP based communication technologies Table 3 ā M-Bus over IP-based LPWAN encapsulation |
17 | 7 Adaptation layer description 7.1 Adaptation layer structure Table 4 ā CI-fields of MBAL Table 5 ā Structure of M-Bus Adaption layer with CI-field CFh 7.2 Adaptation layer services 7.2.1 MBAL Control field (MBAL-CL) 7.2.1.1 Structure of MBAL Control field |
18 | Table 6 ā MBAL Control field in uplink Table 7 ā MBAL Control field in downlink 7.2.1.2 Subfield Version Table 8 ā MBAL-CL Version subfield 7.2.1.3 Subfield Access (uplink) |
19 | Table 9 ā MBAL-CL Access subfield 7.2.1.4 Subfield Latency (downlink) Table 10 ā MBAL-CL Latency subfield 7.2.1.5 Subfield Function code |
20 | Table 11 ā MBAL-CL Function code subfield (uplink) |
21 | Table 12 ā MBAL-CL Function code subfield (downlink) 7.2.2 Other MBAL fields |
22 | Annex A (informative) Overview of LPWAN technologies A.1 LPWAN features for metering communication A.2 Segregation matrix Table A.1 ā LPWAN technologies comparison matrix |
23 | Annex B (informative) MBAL implementation examples B.1 MBAL for alarm data pulling scenario Figure B.1 ā M-Bus alarm data pulling using MBAL B.2 MBAL for user data push and pull |
24 | Figure B.2 ā M-Bus user data push and pull using MBAL B.3 Confirmed User Data transmission Figure B.3 ā Confirmed user data transmission with MBAL |
25 | Annex C (informative) Adaptation mechanism for Cat. NB (NB-IoT) and Cat. M1 (LTE-M) C.1 Cat. M1 and Cat. NB brief description C.2 Cat. M1 and Cat. NB characteristics Table C.1 ā Comparison of Cat. M1 and Cat. NB as defined in 3GPP Release 13/14 [8] C.3 Cat. M1 and Cat. NB network architecture C.3.1 General introduction |
26 | C.3.2 Architecture overview Figure C.1 ā Simple architecture overview for an LTE network C.3.3 CIoT main features and access methods C.3.3.1 CIoT EPS optimizations |
27 | C.3.3.2 Power saving mode Figure C.2 ā PSM and TAU mechanisms chronogram illustration C.3.3.3 Extended discontinuous reception |
28 | Figure C.3 ā eDRX feature chronogram illustration C.4 M-Bus over CIoT C.4.1 Overview C.4.2 Basic M-Bus over CIoT mechanism C.4.2.1 Overview |
29 | Table C.2 ā Basic M-Bus over CIoT protocol stack using DoNAS C.4.2.2 Basic M-Bus over CIoT Table C.3 ā MBAL with CI-field in UDP Payload C.4.3 Advanced M-Bus over CIoT C.4.3.1 M-Bus over CIoT model using transfer level security |
30 | Table C.4 ā Protocol stack used for lightweight IP based communication including COSE security C.4.3.2 Connection establishment C.4.3.2.1 General |
31 | Figure C.4 ā Unsolicited end-to-end data example Figure C.5 ā Unsolicited data transfer attacked with hostile response attempt |
32 | Figure C.6 ā Two-way communication sequence CoAP elements C.4.3.2.2 Introduction |
33 | C.4.3.2.3 Port number C.4.3.2.4 Datagram format Table C.5 ā CoAP datagram format C.4.3.2.5 Header Table C.6 ā CoAP message format (from [5]) |
34 | Table C.7 ā Mandatory CoAP header parameters |
35 | Table C.8 ā Option parameters for enabling the content C.4.3.2.6 Payload C.4.3.2.6.1 General C.4.3.2.6.2 COSE/CBOR C.4.3.2.6.3 Payload organization Table C.9 ā The CoAP payload |
36 | Table C.10 ā The CoAP payload (COSE_Encrypt0 formatted) consists of organized CBOR objects C.4.3.2.6.4 Protected and unprotected header C.4.3.2.6.5 Protected header parameters Table C.11 ā Protected header parameters C.4.3.2.6.6 Unprotected header parameters |
37 | Table C.12 ā Unprotected header parameters Table C.13 ā kid COSE header parameters as a CBOR map |
38 | C.4.3.3 CBOR defined MBAL and payload content C.4.3.3.1 General C.4.3.3.2 Message content Table C.14 ā Overview of currently supported protocol identifications and protocol revisions C.4.3.3.3 CBOR payload content C.4.3.3.3.1 General |
39 | Table C.15 ā Payload components C.4.3.3.3.2 MBAL field Table C.16 ā MBAL Component Table C.17 ā MBAL subfield CBOR elements |
40 | C.4.3.4 Examples of implementation C.4.3.4.1 Security – COSE Content encryption/authentication Table C.18 ā CCM authenticated encryption algorithm overview |
41 | Table C.19 ā IV example for an M-Bus device C.4.3.4.2 Services and parameters |
42 | C.4.3.4.3 Communication sequences / scenarios C.4.3.4.3.1 General C.4.3.4.3.2 Uni-directional end-to-end examples |
43 | Figure C.7 ā Uni-directional unsolicited messages from end device without CoAP reliability |
44 | Figure C.8 ā Unsolicited messages from end device with CoAP reliability |
45 | Figure C.9 ā Install scenario without HES acknowledgement (CNF-IR) C.4.3.4.3.3 Two-way examples |
47 | Figure C.10 ā SND-UD2/RSP-UD scenario. CoAP reliability exploited |
48 | Figure C.11 ā SND-UD2/RSP-UD scenario (continued) |
49 | Annex D (informative) Adaptation mechanism for LoRaWAN D.1 LoRaWAN brief description D.2 LoRaWAN network architecture D.2.1 Overview D.2.2 Application server |
50 | D.2.3 End device D.2.4 Gateways D.2.5 Core network D.2.5.1 Network server D.2.5.2 Join server |
51 | Figure D.1 ā LoRaWAN network architecture and over the air activation mechanism D.3 LoRaWAN security services description |
52 | D.4 LoRaWAN main features D.5 LoRaWAN frame structure overview Table D.1 ā LoRaWAN frame structure overview |
53 | Table D.2 ā LoRaWAN frame control byte structure D.6 M-Bus over LoRaWAN D.6.1 M-Bus upper layers encapsulation in LoRaWAN |
54 | Table D.3 ā M-Bus over LoRaWAN frame structure D.6.2 LoRaWAN and MBAL co-operation D.6.2.1 End device access and operation classes |
55 | Table D.4 ā End device access mapped to LoRaWAN Class D.6.2.2 Acknowledgement D.6.2.3 Pending downlinks D.6.3 Implementation examples D.6.3.1 Overview |
56 | D.6.3.2 M-Bus over LoRaWAN installation procedure Figure D.2 ā M-Bus over LoRaWAN installation procedure D.6.3.3 M-Bus over LoRaWAN for alarm data pulling |
57 | Figure D.3 ā M-Bus over LoRaWAN for alarm data pulling using MBAL D.6.3.4 M-Bus over LoRaWAN for User data push and pull |
58 | Figure D.4 ā M-Bus over LoRaWAN for user data push and pull |
59 | Annex E (informative) Adaptation mechanism for TS-UNB E.1 TS-UNB/MIOTY brief description E.2 MIOTY network architecture E.2.1 Overview Figure E.1 ā Network architecture according to ETSI LTN with TS-UNB air interface |
60 | E.2.2 Service center E.2.3 End-point E.2.4 Base station E.3 MIOTY principles E.3.1 Device classes E.3.2 Scheduling and acknowledgement |
61 | Figure E.2 ā Uplink/Downlink scheduling and acknowledgement E.4 MIOTY frame structure overview |
62 | Table E.1 ā MIOTY frame structure E.5 M-Bus over MIOTY E.5.1 Encapsulation of M-Bus |
63 | Table E.2 ā MPF values for M-Bus Table E.3 ā M-Bus Data Payload E.5.2 MIOTY and MBAL co-operation E.5.2.1 End-point access and device classes |
64 | Table E.4 ā End-point access mapped to device class E.5.2.2 End-point latency E.5.2.3 Acknowledgement E.5.3 Implementation example E.5.3.1 General |
65 | E.5.3.2 M-Bus over MIOTY command workflow Figure E.3 ā Command workflow for M-Bus over MIOTY |
66 | Annex F (informative) Adaptation mechanism for Wize F.1 Wize brief description F.2 Wize services |
67 | F.3 Wize network architecture F.3.1 Overview Figure F.1 ā Wize LPWAN network general architecture F.3.2 Uplink broadcast |
68 | F.3.3 Downlink unicast F.3.4 Downlink broadcast F.3.5 Wize message types and message flow Table F.1 ā Wize protocol message types and flow |
69 | Figure F.2 ā Wize message flow |
70 | F.3.6 Wize security services and management |
71 | Figure F.3 ā Wize protocol security services overview F.3.7 Wize Data Link Layer (DLL) Table F.2 ā Wize DLL Table F.3 ā L6 frame of the Wize protocol |
72 | F.4 M-Bus over Wize F.4.1 Overview Table F.4 ā Protocol layer structure for transporting M-Bus over Wize Table F.5 ā M-Bus over Wize using MBAL encapsulation overview F.4.2 MBAL with CI-field |
73 | Table F.6 ā MBAL-CL function code mapping to Wize DLL |
74 | Bibliography |