{"id":170737,"date":"2024-10-19T10:30:12","date_gmt":"2024-10-19T10:30:12","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/aci-440-2r-17\/"},"modified":"2024-10-25T02:39:39","modified_gmt":"2024-10-25T02:39:39","slug":"aci-440-2r-17","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/aci\/aci-440-2r-17\/","title":{"rendered":"ACI 440.2R 17"},"content":{"rendered":"
Fiber-reinforced polymer (FRP) systems for strengthening concrete structures are an alternative to traditional strengthening techniques such as steel plate bonding, section enlargement, and external post-tensioning. FRP strengthening systems use FRP composite materials as supplemental externally-bonded or near-surface-mounted reinforcement. FRP systems offer advantages over traditional strengthening techniques: they are lightweight, relatively easy to install, and noncorroding. Due to the characteristics of FRP materials as well as the behavior of members strengthened with FRP, specific guidance on the use of these systems is needed. This guide offers general information on the history and use of FRP strengthening systems; a description of the material properties of FRP; and recommendations on the engineering, construction, and inspection of FRP systems used to strengthen concrete structures. This guide is based on the knowledge gained from experimental research, analytical work, and field applications of FRP systems used to strengthen concrete structures. Keywords: aramid fibers; bridges; buildings; carbon fibers; corrosion; cracking; development length; earthquake resistance; fiber-reinforced polymers; structural design.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
5<\/td>\n | CHAPTER 1\u2014INTRODUCTION AND SCOPE 1.1\u2014Introduction <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | 1.2\u2014Scope <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | CHAPTER 2\u2014NOTATION AND DEFINITIONS 2.1\u2014Notation <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 2.2\u2014Definitions <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | CHAPTER 3\u2014BACKGROUND INFORMATION 3.1\u2014Historical development 3.2\u2014Commercially available externally bonded FRP systems <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | CHAPTER 4\u2014CONSTITUENT MATERIALS AND PROPERTIES 4.1\u2014Constituent materials <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 4.2\u2014Physical properties 4.3\u2014Mechanical properties <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 4.4\u2014Time-dependent behavior <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 4.5\u2014Durability 4.6\u2014FRP systems qualification <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | CHAPTER 5\u2014SHIPPING, STORAGE, AND HANDLING 5.1\u2014Shipping 5.2\u2014Storage 5.3\u2014Handling CHAPTER 6\u2014INSTALLATION <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 6.1\u2014Contractor competency 6.2\u2014Temperature, humidity, and moisture considerations 6.3\u2014Equipment 6.4\u2014Substrate repair and surface preparation <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 6.5\u2014Mixing of resins 6.6\u2014Application of FRP systems <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 6.7\u2014Alignment of FRP materials 6.8\u2014Multiple plies and lap splices 6.9\u2014Curing of resins <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 6.10\u2014Temporary protection CHAPTER 7\u2014INSPECTION, EVALUATION, AND ACCEPTANCE 7.1\u2014Inspection 7.2\u2014Evaluation and acceptance <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | CHAPTER 8\u2014MAINTENANCE AND REPAIR 8.1\u2014General 8.2\u2014Inspection and assessment <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 8.3\u2014Repair of strengthening system 8.4\u2014Repair of surface coating CHAPTER 9\u2014GENERAL DESIGN CONSIDERATIONS 9.1\u2014Design philosophy 9.2\u2014Strengthening limits <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 9.3\u2014Selection of FRP systems <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 9.4\u2014Design material properties <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | CHAPTER 10\u2014FLEXURAL STRENGTHENING 10.1\u2014Nominal strength 10.2\u2014Reinforced concrete members <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 10.3\u2014Prestressed concrete members <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 10.4\u2014Moment redistribution CHAPTER 11\u2014SHEAR STRENGTHENING <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 11.1\u2014General considerations 11.2\u2014Wrapping schemes 11.3\u2014Nominal shear strength <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | CHAPTER 12\u2014STRENGTHENING OF MEMBERS SUBJECTED TO AXIAL FORCE OR COMBINED AXIAL AND BENDING FORCES 12.1\u2014Pure axial compression <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 12.2\u2014Combined axial compression and bending 12.3\u2014Ductility enhancement <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 12.4\u2014Pure axial tension CHAPTER 13\u2014SEISMIC STRENGTHENING <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 13.1\u2014Background 13.2\u2014FRP properties for seismic design 13.3\u2014Confinement with FRP <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 13.4\u2014Flexural strengthening <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 13.5\u2014Shear strengthening 13.6\u2014Beam-column joints 13.7\u2014Strengthening reinforced concrete shear walls <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | CHAPTER 14\u2014FIBER-REINFORCED POLYMER REINFORCEMENT RESULTS 14.1\u2014Bond and delamination <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 14.2\u2014Detailing of laps and splices <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 14.3\u2014Bond of near-surface-mounted systems <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | CHAPTER 15\u2014DRAWINGS, SPECIFICATIONS, AND SUBMITTALS 15.1\u2014Engineering requirements 15.2\u2014Drawings and specifications 15.3\u2014Submittals <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | CHAPTER 16\u2014DESIGN EXAMPLES 16.1\u2014Calculation of FRP system tensile properties <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 16.3\u2014Flexural strengthening of an interior reinforced concrete beam with FRP laminates <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 16.4\u2014Flexural strengthening of an interior reinforced concrete beam with near-surface-mounted FRP bars <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 16.5\u2014Flexural strengthening of an interior prestressed concrete beam with FRP laminates <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | 16.6\u2014Shear strengthening of an interior T-beam <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | 16.7\u2014Shear strengthening of an exterior column <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | 16.8\u2014Strengthening of a noncircular concrete column for axial load increase <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | 16.9\u2014Strengthening of a noncircular concrete column for increase in axial and bending forces <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | 16.11\u2014Lap-splice clamping for seismic strengthening <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | 16.12\u2014Seismic shear strengthening <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | 16.13\u2014Flexural and shear seismic strengthening of shear walls <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | CHAPTER 17\u2014REFERENCES <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | Authored documents <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | APPENDIX A\u2014MATERIAL PROPERTIES OF CARBON, GLASS, AND ARAMID FIBERS <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | APPENDIX B\u2014SUMMARY OF STANDARD TEST METHODS <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | APPENDIX C\u2014AREAS OF FUTURE RESEARCH <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | APPENDIX D\u2014METHODOLOGY FOR COMPUTATION OF SIMPLIFIED P-M INTERACTION DIAGRAM FOR NONCIRCULAR COLUMNS <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" 440.2R-17: Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, First Printing: May 2017 – Errata as of August 22, 2017<\/b><\/p>\n |