{"id":374735,"date":"2024-10-20T02:40:06","date_gmt":"2024-10-20T02:40:06","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-iec-62488-32021\/"},"modified":"2024-10-26T04:39:01","modified_gmt":"2024-10-26T04:39:01","slug":"bs-en-iec-62488-32021","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-iec-62488-32021\/","title":{"rendered":"BS EN IEC 62488-3:2021"},"content":{"rendered":"
This part of IEC 62488 applies to power line carrier terminals and networks used to transmit information over power networks including extra high, high and medium voltage (EHV\/HV\/MV) power lines using both digital and optionally analogue modulation systems in a frequency range between 16 kHz and 1 MHz (see also IEC 62488-1). In many countries, power line carrier (PLC) channels represent a significant part of the utilityowned telecommunication system. A circuit normally routed via a PLC channel can also be routed via a channel using a different transmission medium such as point to point radio, optical fibre or open wire circuit. It is therefore important that the input and output interfaces that are used between terminals in the communication system are standardised. The issues requiring consideration of DPLC and\/or APLC devices as parts of a telecommunication network can be found in IEC 62488-1. Figure 1 shows the correspondence between the elements needed to implement PLC systems and the related International Standards.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Annex ZA(normative)Normative references to international publicationswith their corresponding European publications <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 1 Scope <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 2 Normative references Figures Figure 1 \u2013 Schematic representation of the elements needed to implement a PLC system <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 3 Terms, definitions and abbreviated terms 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 3.2 Abbreviated terms <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 4 Generic structure of DPLC and ADPLC terminals <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | Figure 2 \u2013 Generic architecture of a DPLC terminal <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | Figure 3 \u2013 Generic structure of an ADPLC terminal <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 5 Access side interfaces 5.1 General 5.2 Digital interfaces 5.2.1 Ethernet IEEE 802.3 interface Figure 4 \u2013 ETH IEEE 802.3 RJ45 type connector <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 5.2.2 Serial interface 5.3 Analogue interfaces Figure 5 \u2013 ETH IEEE 802.3 SC type connector <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 5.4 Teleprotection system interface 5.4.1 Description 5.4.2 Integrated teleprotection 5.4.3 Teleprotection interface frequency band 5.4.4 Teleprotection interface impedance 5.4.5 Teleprotection interface reflection <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 5.4.6 Teleprotection interface signal levels 5.4.7 Teleprotection interface control circuits 6 HF line interface 6.1 DPLC high frequency band & channeling <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 6.2 Frequency accuracy 6.3 Signal levels 6.4 In-band emissions 6.5 Nominal impedance 6.6 Return loss 6.7 Degree of unbalance to earth 6.8 Tapping loss <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 6.9 Spurious emissions Figure 6 \u2013 Tapping loss limits for DPLC terminals <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 6.10 Nominal output power in the high frequency band 7 Quality and performance 7.1 General Figure 7 \u2013 Max level of spurious emissions outside the high frequency band <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 7.2 Dynamic range of the DPLC receiver 7.3 Bit rate Figure 8 \u2013 Reference points for measuring DPLC parameters <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 7.4 Start-up time 7.5 Recovery time after synchronization loss 7.6 Sensitivity 7.7 Selectivity 7.8 Adaptability to line conditions 7.9 Quality of voice channels <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 7.10 Telephone signalling transmission 7.11 Quality on the serial DATA channels 7.11.1 General 7.11.2 Bit rate 7.11.3 BER Figure 9 \u2013 Block diagram of a serial data channel Tables Table 1 \u2013 Dependence of voice channel quality vs. DPLC capacity <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 7.11.4 Nominal transmission link delay 7.12 Quality of the frame transmission using Ethernet interfaces 7.12.1 General 7.12.2 LAN to LAN Speed 7.12.3 LAN to LAN latency 7.12.4 Packet loss on the LAN transfer 8 Testing 8.1 General <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 8.2 Test setup for DPLC link tests 8.3 Signal to noise ratio 8.4 Return loss <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | Figure 10 \u2013 Test circuit for return loss measurement <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 8.5 Degree of unbalance to earth 8.5.1 General 8.5.2 Longitudinal conversion loss Figure 11 \u2013 Test circuit for LCL measurement (transmission port) <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 8.5.3 Output signal balance 8.6 Tapping loss Figure 12 \u2013 Test circuit for OSB measurement (Rx port) <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 8.7 Spurious and in-band emissions Figure 13 \u2013 Test circuit for tapping loss measurement <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 8.8 Selectivity Figure 14 \u2013 Test circuit for spurious and in-band emissions measurement <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Figure 15 \u2013 Test circuit for selectivity measurement <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 8.9 Bit error rate <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Figure 16 \u2013 Test circuit for bit error rate measurement <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 8.10 Serial data transmission delay Figure 17 \u2013 Test circuit for serial data transmissiondelay measurement with a data tester Figure 18 \u2013 Test circuit for serial data transmission delay measurement <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 8.11 Dynamic range of the DPLC receiver 8.12 LAN to LAN testing 8.12.1 General Figure 19 \u2013 Test circuit for maximal throughput and latency measurement <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 8.12.2 Maximum LAN to LAN throughput 8.12.3 LAN to LAN latency 8.13 Start-up time 8.14 Recovery time after synchronization loss <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 9 Configuration and management 9.1 General 9.2 Configuration 9.3 Network management system 9.4 Local terminal alarms <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 9.5 Event logging 10 Cyber security 10.1 General 10.2 Transmitted payload 10.3 Management interface 10.3.1 General <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 10.3.2 Legacy-style management interfaces \/ Manufacturer-specific management interfaces 10.3.3 LAN\/WAN connected management interfaces 10.3.4 Authentication and role-base model 10.4 Network management system interface <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 10.5 Security-related event logging 11 DPLC safety 11.1 General 11.2 Safety reference standard 11.3 Classification of DPLC terminals Table 2 \u2013 Basic insulation (Table C.6 of IEC 6025527:2013) <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 11.4 Ingress protection Table 3 \u2013 Double or reinforced insulation (Table C.10 of IEC 6025527:2013) <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 11.5 Type and routine tests <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Table 4 \u2013 List of Type and Routine Tests (Table 12 of IEC 6025527:2013) <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 12 Storage and transportation, operating conditions, power supply 12.1 Storage and transportation 12.1.1 Climatic conditions Table 5 \u2013 Classification of climatic conditions (Table 1 of IEC 60721-3-1:1997) <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 12.1.2 Mechanical Table 6 \u2013 Climatic tests for storage and transportation <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | Table 7 \u2013 Classification of mechanical conditions for transportation(Table 5 of IEC 60721-3-2:1997) <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 12.2 Operating conditions 12.2.1 Climatic conditions Table 8 \u2013 Classification of climatic conditions from Table 1 of IEC 6072133:2002 <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 12.2.2 Mechanical 12.2.3 Operating conditions set of tests Table 9 \u2013 Classification of mechanical conditions from Table 6 of IEC 6072133:2002 Table 10 \u2013 Climatic Tests <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 12.3 Power supply 12.3.1 AC supply 12.3.2 DC supply Table 11 \u2013 Sinusoidal vibration test Table 12 \u2013 Non-repetitive shock test <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 13 EMC 13.1 Emission and immunity reference standards 13.2 Emission 13.2.1 Radiated and conducted emission <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | Table 13 \u2013 Emission \u2013 Enclosure port (Table 1 of IEC 6100064:2011) <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | Table 14 \u2013 Emission \u2013 Low voltage AC and DC mains port (Table 2 of IEC 6100064:2011) <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | Table 15 \u2013 Emission \u2013 Telecommunications\/network port (Table 3 of IEC 6100064:2011) <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | 13.2.2 Low frequency disturbance emission 13.3 Immunity 13.3.1 EMC environment Figure 20 \u2013 LF disturbances measurement setup <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | Table 16 \u2013 Characterization of the electromagnetic phenomena (Table 1 of IEC 6100065:2015) Table 17 \u2013 Port classification <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 13.3.2 Functional requirements 13.3.3 Immunity test list Table 18 \u2013 Performance criteria <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | Table 19 \u2013 Immunity test list <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Annex A (informative)HF modulated power signal for ADPLC A.1 General A.2 Computation model of ADPLC <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | Figure A.1 \u2013 Calculation model of load capacity for ADPLC <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | A.3 Distribution of E\/U ratio of voice channels <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | Figure A.2 \u2013 Cumulative distributions of E\/U ratio of voice channels for positive half Table A.1 \u2013 Approximation formula for E\/U cumulative distribution of speech <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | A.4 Distribution of E\/U ratio of sinusoidal waves Figure A.3 \u2013 Probability density of combined sine waves <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | A.5 Example of E\/U ratio of a digital signal Figure A.4 \u2013 Constellation diagram of 64 QAM Figure A.5 \u2013 Amplitude spectra of unmodulated OFDM sub-carriers <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | A.6 Composite distribution of E\/U ratios Figure A.6 \u2013 Probability of constellation point power in 64 QAM Table A.2 \u2013 PDF of constellation point power in 64 QAM constellation diagram <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Figure A.7 \u2013 Cumulative distribution of comprehensive E\/U ratios <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | A.7 RMS power and load capacity of voice signals <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | Figure A.8 \u2013 Cumulative distribution of equivalent volume for N system channel <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | A.8 Comprehensive load capacity for ADPLC Table A.3 \u2013 Calculation of PRMS(1 %) and load capacity <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | A.9 Simplified computation method for comprehensive load capacity <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Power line communication systems for power utility applications – Digital Power Line Carrier (DPLC) terminals and hybrid ADPLC terminals<\/b><\/p>\n |